

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

graphql-pro

Breaking Changes

Deprecations

New Features

Bug Fix

1.7.12 (29 Aug 2018)

New Features

	Add GraphQL::Pro::CanCanIntegration which leverages GraphQL-Ruby’s built-in auth

1.7.11 (21 Aug 2018)

Bug Fix

	PunditIntegration: Don’t try to authorize loaded objects when they’re nil

1.7.10 (10 Aug 2018)

New Features

	Update PunditIntegration for arguments, unions, interfaces and mutations

1.7.9 (9 Aug 2018)

New Features

	Add a new PunditIntegration which leverages the built-in authorization methods

1.7.8 (10 July 2018)

Bug Fix

	Authorization: fix scoping lists of abstract type when there’s no #scope method on the strategy

1.7.7 (10 May 2018)

Bug Fix

	Fix ordering of authorization field instrumenter (put it at the end, not the beginning of the list)

1.7.6 (2 May 2018)

New Features

	Authorization: Add view/access/authorize methods to GraphQL::Schema::Mutation

1.7.5 (19 Apr 2018)

New Features

	Authorization: when a fallback: configuration is given, apply it to each field which doesn’t have a configuration of its own or from its return type. Don’t apply that configuration at schema level (it’s applied to each otherwise uncovered field instead).

1.7.4 (16 Apr 2018)

New Features

	Support Mongoid::Criteria in authorization scoping

1.7.3 (12 Apr 2018)

Bug Fix

	Fix authorization code for when ActiveRecord is not defined

1.7.2 (10 Apr 2018)

Bug Fix

	Use a more permissive regexp (/^\s*((?:[a-z._]+)\(.*\))\s*(asc|desc)?\s*$/im) to parse SQL functions

1.7.1 (4 Apr 2018)

Bug Fix

	Fix route helpers to support class-based schemas

1.7.0 (25 Mar 2018)

New Features

	Support 1.8-pre versions of GraphQL-Ruby

Bug Fix

	Fix OperationStore when other query instrumenters need .query_string

1.6.5 (7 Feb 2018)

Bug Fix

	Support LEAST(...) in stable cursors

1.6.4 (7 Feb 2018)

Bug Fix

	Support CASE ... END in stable cursors

1.6.3 (26 Jan 2018)

Bug Fix

	Support FIELD(...) in stable cursors

1.6.2 (13 Jan 2018)

Bug Fix

	Improve detection of OperationStore for the dashboard

	Serve Content-Type and Content-Length headers with dashboard pages

	Better Dashboard#inspect for Rails routes output

	Use a string to apply order-by-primary-key for better Rails 3 support

1.6.1 (22 Nov 2017)

New Features

	Support composite_primary_keys gem

1.6.0 (13 Nov 2017)

Breaking Changes

	GraphQL::Pro::UI renamed to GraphQL::Pro::Dashboard

Deprecations

	Routing method .ui was renamed to .dashboard

New Features

	Added GraphQL::Pro::Subscriptions

	Added subscriptions component to Dashboard

1.5.9 (10 Oct 2017)

Bug Fix

	Don’t crash when scoping lists of abstract types with Pundit

1.5.8 (2 Oct 2017)

New Features

	Use authorize(:pundit, namespace:) to lookup policies in a namespace instead of the global namespace.

Bug Fix

	Introspection data is allowed through fallback: authorize: and access: filters. (It can be hidden with a view: filter.)

1.5.7 (20 Sept 2017)

Bug Fix

	Properly return nil when a list of authorized objects returns nil

1.5.6 (19 Sept 2017)

New Features

	Add authorization(..., operation_store:) option for authorizing operation store requests

1.5.5 (18 Sept 2017)

New Features

	Support ConnectionType.bidrectional_pagination? in stable RelationConnection

1.5.4 (18 Sept 2017)

Bug Fix

	Fix load issue when Rails is not present

1.5.3 (4 Sept 2017)

Bug Fix

	Fix OperationStore views on PostgresQL

	Fix stable cursors when joined tables have the same column names

Note: This is implemented by adding extra fields to the SELECT
clause with aliases like cursor_#{idx}, so you’ll notice this in your
SQL logs.

1.5.2 (4 Aug 2017)

Bug Fix

	Bump graphql dependency to 1.6

1.5.1 (2 Aug 2017)

New Features

	Routing extensions moved to using GraphQL::Pro::Routes

Deprecations

	Deprecate using GraphQL::Pro, move extensions to GraphQL::Pro::Routes

1.5.0 (31 Jul 2017)

New Features

	Add GraphQL::Pro::OperationStore for persisted queries with Rails

1.4.8 (14 Jul 2017)

Bug Fix

	Update authorization to use type-level resolve_type hooks

1.4.7 (13 Jul 2017)

Bug Fix

	Update authorization instrumentation for graphql >= 1.6.5

1.4.6 (6 Jul 2017)

Bug Fix

	Fix typo in RelationConnection source

1.4.5 (6 Jul 2017)

Bug Fix

	Correctly fall back to offset-based cursors with before: argument

1.4.4 (15 Jun 2017)

New Features

	Add Schema#unauthorized_object(obj, ctx) hook for failed runtime checks

Bug Fix

	Prevent usage of parent_role: with view: or access: (since parent role requires a runtime check)

	Fix versioned, encrypted cursors with 16-byte legacy cursors

1.4.3 (13 Jun 2017)

New Features

	OrderedRelationConnection supports ordering by joined fields

Bug Fix

	Update auth plugin for new Relay instrumenters

	Pro::Encoder supports encoder(...) as documented

1.4.2 (2 May 2017)

Bug Fix

	Fix compatibility of RelationConnection and RangeAdd helper

1.4.1 (19 Apr 2017)

New Features

	Add :datadog monitoring

1.4.0 (19 Apr 2017)

New Features

	ActiveRecord::Relations can be scoped by Pundit Scopes, CanCan accessible_by, or custom strategy’s #scope(gate, relation) methods

	Default authorization configuration can be provided with authorization(..., fallback: { ... })

	Authorization’s :current_user key can be customized with authorization(..., current_user: ...)

1.3.0 (7 Mar 2017)

New Features

	Serve static, persisted queries with GraphQL::Pro::Repository

1.2.3 (2 May 2017)

Bug Fix

	Fix compatibility of RelationConnection and RangeAdd helper

1.2.2 (6 Mar 2017)

Bug Fix

	Raise GraphQL::Pro::RelationConnection::InvalidRelationError when a grouped, unordered relation is returned from a field. (This relation can’t be stably paginated.)

1.2.1 (3 Mar 2017)

New Features

	Formally support ActiveRecord >= 4.1.0

Bug Fix

	Support grouped relations in GraphQL::Pro::RelationConnection

1.2.0 (1 Mar 2017)

New Features

	Authorize fields based on their parent object, for example:

AccountType = GraphQL::ObjectType.define do
 name "Account"
 # This field is visible to all users:
 field :name, types.String
 # This is only visible when the current user is an `:owner`
 # of this account
 field :account_balance, types.Int, authorize: { parent_role: :owner }
end

1.1.1 (22 Feb 2017)

Bug Fixes

	Fix monitoring when Query#selected_operation is nil

1.1.0 (9 Feb 2017)

New Features

	Add AppSignal monitoring platform

	Add type- and field-level opting in and opting out of monitoring

	Add monitor_scalars: false to skip monitoring on scalars

Bug Fixes

	Fix OrderedRelationConnection when neither first nor last are provided (use max_page_size or don’t limit)

1.0.4 (23 Jan 2017)

Bug Fixes

	OrderedRelationConnection exposes more metadata methods: parent, field, arguments, max_page_size, first, after, last, before

1.0.3 (23 Jan 2017)

Bug Fixes

	When an authorization check fails on a non-null field, propagate the null and add a response to the errors key (as if the field had returned null). It previously leaked the internal symbol __graphql_pro_access_not_allowed__.

	Apply a custom Pundit policy even when the value isn’t nil. (It previously fell back to Pundit.policy, skipping a pundit_policy_name configuration.)

1.0.2

Bug Fixes

	OrderedRelationConnection exposes the underlying relation as #nodes (like RelationConnection does), supporting custom connection fields.

1.0.1

New Features

	CanCan integration now supports a custom Ability class with the ability_class: option:

authorize :cancan, ability_class: CustomAbility

1.0.0

	GraphQL::Pro released

graphql-relay

Breaking Changes

Deprecations

New Features

Bug Fix

0.12.0 (21 Jul 2016)

Breaking Changes

	Don’t cache a global node identification config #51

To migrate, assign your node identification helper to the schema:

NodeIdentification = GraphQL::Relay::GlobalNodeIdentification.define { ... }
MySchema.node_identification = NodeIdentification

New Features

	Support lazy definition blocks from graphql-ruby 0.17

	Add startCursor and endCursor to PageInfo #60

Bug Fix

	Support field: keyword for connection helper #58

0.11.2 (6 Jul 2016)

New Features

	Include description for built-in objects #55

0.11.1 (24 Jun 2016)

Bug Fix

	Correctly pass parent object to Connections #53

0.11.0 (19 Jun 2016)

Breaking Changes

	BaseType.define_connection no longer caches the result to use as the default BaseType.connection_type. Now, store the result of .define_connection in a variable and pass that variable into the schema:

Capture the returned type:
SomethingCustomConnectionType = SomethingType.define_connection { ... }

DifferentThingType = GraphQL::ObjectType.define do
 # And pass it to the connection helper:
 connection :somethings, SomethingCustomConnectionType
end

New Features

	Support for custom edge types / classes #50

	Support for multiple connection classes #50

0.10.0 (31 May 2016)

New Feature

	Support graphql 0.14.0 #47

Bug Fix

	Use strings as argument names, not symbols #47

0.9.5

New Feature

	Root id field may have a description #43

0.9.4 (29 Apr 2016)

Bug Fix

	Fix Node interface to support GraphQL 0.13.0+

0.9.2 (29 Apr 2016)

Bug Fix

	Fix Node interface when type_from_object returns nil

0.9.1 (6 Apr 2016)

Bug Fix

	Respond to connection fields without any pagination arguments

	Limit by max_page_size even when no arguments are present

0.9.0 (30 Mar 2016)

Breaking change

	Remove the order argument from connection fields. This isn’t part of the spec and shouldn’t have been there in the first place!

You can implement this behavior with a custom argument, for example:

field :cities, CityType.connection_type do
 argument :order, types.String, default_value: "name"
 resolve ->(obj, args, ctx) {
 obj.order(args[:order])
 }
end

Bug Fix

	Include the MIT license in the project’s source

0.8.1 (22 Mar 2016)

Bug Fix

	Accept description for Mutations

0.8.0 (20 Mar 2016)

New Feature

	Accept configs for to_global_id and from_global_id

	Support graphql 0.12+

0.7.1 (29 Feb 2016)

Bug Fix

	Limit the count(*) when testing next page with ActiveRecord #28

0.7.0 (20 Feb 2016)

New Feature

	max_page_size option for connections

	Support ActiveSupport 5.0.0.beta2

0.6.2 (11 Feb 2016)

Bug Fix

	Correctly cast values from connection cursors #21

	Use class name instead of class object when finding a connection implementation (to support Rails autoloading) #16

0.6.1 (14 Dec 2015)

Bug Fix

	Stringify id when passed into to_global_id

0.6.0 (11 Dec 2015)

Breaking Change

	GlobalNodeIdentification#object_from_id(id, ctx) now accepts context as the second argument #9

0.5.1 (11 Dec 2015)

Feature

	Allow custom UUID join string #15

Bug Fix

	Remove implicit ActiveSupport dependency #14

Changelog

Breaking changes

Deprecations

New features

Bug fixes

1.8.10 (21 Sep 2018)

Bug fixes

	When using loads: with a nullable mutation input field, allow null values to be provided. #1851

	When an invalid Base64 encoded cursor is provided, raise a GraphQL::ExecutionError instead of ArgumentError. #1855

	Fix an issue with extras: [:path] would use the field’s path instead of the context. #1859

New features

	Add scalar type generator rails g graphql:scalar #1847

	Add #dig method to Query::Context #1861

1.8.9 (13 Sep 2018)

Breaking changes

	When field ... is called with a block and the block has one argument, the field is yielded, but self inside the block is not changed to the field. #1843

New features

	extras: [...] can inject values from the field instance #1808

	Add ISO8601DateTime.time_precision for customization #1845

	Fix input objects with default values of enum #1827

	Schema.sync_lazy(value) hook for intercepting lazy-resolved objects #1784

Bug fixes

	When a field block is provided with an arity of 1, yield the field #1843

1.8.8 (27 Aug 2018)

Bug fixes

	When using RelayClassicMutation, client_mutation_id will no longer be passed to authorized? method #1771

	Fix issue in schema upgrader script which would cause .to_non_null_type calls in type definition to be ignored #1783

	Ensure enum values respond to graphql_name #1792

	Fix infinite resolution bug that could occur when an exception not inheriting from StandardError is thrown #1804

New features

	Add #path method to schema members #1766

	Add as: argument to allow overriding the name of the argument when using loads: #1773

	Add support for list of IDs when using loads: in an argument definition #1797

1.8.7 (9 Aug 2018)

Breaking changes

	Some mutation authorization hooks added in 1.8.5 were changed, see #1736 and #1737. Roughly:

	before_prepare was changed to #ready?

	validate_* hooks were replaced with a single #authorized? method

Bug fixes

	Argument default values include nested default values #1728

	Clean up duplciate method defs #1739

New features

	Built-in support for Mongoid 5, 6, 7 #1754

	Mutation #ready? and #authorized? may halt flow and/or return data #1736, #1737

	Add .scope_items(items, ctx) hook for filtering lists

	Add #default_graphql_name for overriding default logic #1729

	Add #add_argument for building schemas #1732

	Cursors are decoded using urlsafe_decode64 to future-proof for urlsafe cursors #1748

1.8.6 (31 July 2018)

Breaking changes

	Only allow Objects to implement actual Interfaces #1715. Use include instead for plain Ruby modules.

	Revert extending interface methods onto Objects #1716. If you were taking advantage of this feature, you can create a plain Ruby module with the functionality and include it in both the interface and object.

Deprecations

New features

	Support string descriptions (from June 2018 GraphQL spec) #1725

	Add some accessors to Schema members #1722

	Yield argument for definition block with arity of one #1714

	Yield field for definition blocks with arity of one #1712

	Support grouping by “endpoint” with skylight instrumentation #1663

	Validation: Don’t traverse irep if no handlers are registered #1696

	Add nodes_field option to edge_type to hide nodes field #1693

	Add GraphQL::Types::ISO8601DateTime to documentation #1694

	Conditional Analyzers #1690

	Improve error messages in ActionCableSubscriptions #1675

	Add Prometheus tracing #1672

	Add map to InputObject #1669

Bug fixes

	Improve the mutation generator #1718

	Fix method inheritance for interfaces #1709

	Fix Interface inheritance chain #1686

	Fix require in tracing.rb #1685

	Remove delegate for FieldResolutionContext#schema #1682

	Remove duplicated object_class method #1667

1.8.5 (10 July 2018)

Breaking changes

	GraphQL validation errors now include "filename" if the parsed document had a filename #1618

Deprecations

	TypeKind#resolves? is deprecated in favor of TypeKind#abstract? #1619

New features

	Add Mutation loading/authorization system #1609

	Interface definition_methods are inherited by object type classes #1635

	include "filename" in GraphQL errors if the parsed document has a filename #1618

	Add Schema::InputObject#empty? #1651

	require ISO8601DateTime by default #1660

	Support extend in the parser #1620

	Improve generator to have nicer error handling in development

Bug fixes

	Fix @skip/@include with default value of false #1617

	Fix lists of abstract types with promises #1613

	Don’t check the type of nil when it’s in a list #1610

	Fix NoMethodError when variables: nil is passed to execute(...) #1661

	Objects returned from Schema.unauthorized_objects are properly wrapped by their type proxies #1662

1.8.4 (21 June 2018)

New features

	Add class-based definitions for Relay types #1568

	Add a built-in auth system #1494

Bug fixes

	Properly rescue coercion errors in variable values #1602

1.8.3 (14 June 2018)

New features

	Add an ISO 8601 DateTime scalar: Types::ISO8601DateTime. #1566

	Use classes under the hood for built-in scalars. These are now accessible via Types:: namespace. #1565

	Add possible_types helpers to abstract types #1580

Bug fixes

	Fix Language::Visitor when visiting InputObjectTypeDefinition nodes to include child Directive nodes. #1584

	Fix an issue preventing proper subclassing of TimeoutMiddleware. #1579

	Fix graphql:interface generator such that it generates working code. #1577

	Update the description of auto-generated before and after arguments to better describe their input type. #1572

	Add Language::Nodes::DirectiveLocation AST node to represent directive locations in directive definitions. #1564

1.8.2 (6 June 2018)

Breaking changes

	Schema::InputObject#to_h recursively transforms hashes to underscorized, symbolized keys. #1555

New features

	Generators create class-based types #1562

	Schema::InputObject#to_h returns a underscorized, symbolized hash #1555

Bug fixes

	Support default_mask in class-based schemas #1563

	Fix null propagation for list types #1558

	Validate unique arguments in queries #1557

	Fix RelayClassicMutations with no arguments #1543

1.8.1 (1 June 2018)

Breaking changes

	When filtering items out of a schema, Unions will now be hidden if their possible types are all hidden or if all fields returning it are hidden. #1515

New features

	GraphQL::ExecutionError.new accepts an extensions: option which will be merged into the "extensions" key in that error’s JSON #1552

Bug fixes

	When filtering items out of a schema, Unions will now be hidden if their possible types are all hidden or if all fields returning it are hidden. #1515

	Require that fields returning interfaces have selections made on them #1551

	Correctly mark introspection types and fields as introspection? #1535

	Remove unused introspection objects #1534

	use object/context in the upgrader instead of @object/@context #1529

	(Development) Don’t require mongodb for non-mongo tests #1548

	Track position of union member nodes in the parser #1541

1.8.0 (17 May 2018)

1.8.0 has been in prerelease for 6 months. See the prerelease changelog for change-by-change details. Here’s a high-level changelog, followed by a detailed list of changes since the last prerelease.

High-level changes

Breaking Changes

	GraphQL-Ruby is not tested on Ruby 2.1. #1070 Because Ruby 2.1 doesn’t garbage collect Symbols, it’s possible that GraphQL-Ruby will introduce a OOM vulnerability where unique symbols are dynamically created, for example, turning user input into Symbols. No instances of this are known in GraphQL-Ruby … yet!

	GraphQL::Delegate, a duplicate of Ruby’s Forwardable, was removed. Use Forwardable instead, and update your Ruby if you’re on 2.4.0, due to a performance regression in Forwardable in that version.

	MySchema.subscriptions.trigger asserts that its inputs are valid arguments #1400. So if you were previously passing invalid options there, you’ll get an error. Remove those options.

New Features

	A new class-based API for schema definition. The old API is completely supported, but the new one is much nicer to use. If you migrate, some schema extensions may require a bit of extra work.

	Built-in support for Mongoid-backed Relay connections

	.execute(variables: ...) and subscriptions.trigger both accept Symbol-keyed hashes

	Lots of other small things around SDL parsing, tracing, runtime … everything. Read the details below for a full list.

Bug Fixes

	Many, many bug fixes. See the detailed list if you’re curious about specific bugs.

Changes since 1.8.0.pre11:

Breaking Changes

	GraphQL::Schema::Field#initialize’s signature changed to accept keywords and a block only. type:, description: and name: were moved to keywords. See Field.from_options for how the field(...) helper’s arguments are merged to go to Field.new. #1508

New Features

	Schema::Resolver is a replacement for GraphQL::Function #1472

	Fix subscriptions with class-based schema #1478

	Tracing::NewRelicTracing accepts set_transaction_name: to use the GraphQL operation name as the NewRelic transaction name #1430

Bug fixes

	Backported accepts_definitions are inherited #1514

	Fix Schema generator’s resolve_type method #1481

	Fix constant assignment warnings with interfaces including multiple other interfaces #1465

	InputObject types loaded from SDL have the proper AST node assigned to them #1512

1.8.0.pre11 (3 May 2018)

Breaking changes

	Schema::Mutation.resolve_mutation was moved to an instance method; see changes to Schema::RelayClassicMutation in #1469 for an example refactor

	GraphQL::Delegate was removed, use Ruby’s Forwardable instead (warning: bad performance on Ruby 2.4.0)

	GraphQL::Schema::Interface is a module, not a class #1372. To refactor, use a base module instead of a base class:

module BaseInterface
 include GraphQL::Schema::Interface
end

And include that in your interface types:

module Reservable
 include BaseInterface
 field :reservations, ...
end

In object types, no change is required; use implements as before:

class EventVenue < BaseObject
 implements Reservable
end

New features

	GraphQL::Schema::Interface is a module

	Support prepare: and as: argument options #1469

	First-class support for Mongoid connections #1452

	More type inspection helpers for class-based types #1446

	Field methods may call super to get the default behavior #1437

	variables: accepts symbol keys #1401

	Reprint any directives which were parsed from SDL #1417

	Support custom JSON scalars #1398

	Subscription trigger accepts symbol, underscored arguments and validates their presence #1400

	Mutations accept a null(true | false) setting to affect field nullability #1406

	RescueMiddleware uses inheritance to match errors #1393

	Resolvers may return a list of errors #1231

Bug fixes

	Better error for anonymous class names #1459

	Input Objects correctly inherit arguments #1432

	Fix .subscriptions for class-based Schemas #1391

1.8.0.pre10 (4 Apr 2018)

New features

	Add Schema::Mutation and Schema::RelayClassicMutation base classes #1360

Bug fixes

	Fix using anonymous classes for field types #1358

1.8.0.pre9 (19 Mar 2018)

	New version number. (I needed this because I messed up build tooling for 1.8.0.pre8).

1.8.0.pre8 (19 Mar 2018)

New Features

	Backport accepts_definition for configurations #1357

	Add #owner method to Schema objects

	Add Interface.orphan_types config for orphan types #1346

	Add extras: :execution_errors for add_error #1313

	Accept a block to Schema::Argument#initialize #1356

Bug Fixes

	Support cursor_encoder #1357

	Don’t double-count lazy/eager field time in Tracing #1321

	Fix camelization to support single leading underscore #1315

	Fix .resolve_type for Union and Interface classes #1342

	Apply kwargs before block in Argument.from_dsl #1350

1.8.0.pre7 (27 Feb 2018)

New features

	Upgrader improvements #1305

	Support global_id_field for interfaces #1299

	Add camelize: false #1300

	Add readers for context, object and arguments #1283

	Replace Schema.method_missing with explicit whitelist #1265

1.8.0.pre6 (1 Feb 2018)

New features

	Custom enum value classes #1264

Bug fixes

	Properly print SDL type directives #1255

1.8.0.pre5 (1 Feb 2018)

New features

	Upgrade argument access with the upgrader #1251

	Add Schema#find(str) for finding schema members by name #1232

Bug fixes

	Fix Schema.max_complexity #1246

	Support cyclical connections/edges #1253

1.8.0.pre4 (18 Jan 2018)

Breaking changes

	Type.fields, Field.arguments, Enum.values and InputObject.arguments return a Hash instead of an Array #1222

New features

	By default, fields try hash keys which match their name, as either a symbol or a string #1225

	field do ... end instance_evals on the Field instance, not a FieldProxy #1227

	[T, null: true] creates lists with nullable items #1229

	Upgrader improvements #1223

Bug fixes

	Don’t require parser unless the upgrader is run #1218

1.8.0.pre3 (12 Jan 2018)

New Features

	Custom Context classes for class-based schemas #1161

	Custom introspection for class-based schemas #1170

	Improvements to upgrader tasks and internals #1151, #1178, #1212

	Allow description inside field blocks #1175

1.8.0.pre2 (29 Nov 2017)

New Features

	Add rake graphql:upgrade[app/graphql] for automatic upgrade #1110

	Automatically camelize field names and argument names #1143, #1126

	Improved error message when defining name instead of graphql_name #1104

Bug fixes

	Fix list wrapping when value is nil #1117

	Fix ArgumentError typo #1098

1.8.0.pre1 (14 Nov 2017)

Breaking changes

	Stop official support for Ruby 2.1 #1070

New features

	Add class-based schema definition API #1037

1.7.14 (4 Apr 2018)

New features

	Support new IDL spec for & for interfaces #1304

	Schema members built from IDL have an #ast_node #1367

Bug fixes

	Fix paging backwards with hasNextPage #1319

	Add hint for orphan_types in error message #1380

	Use an empty hash for result when a query has unhandled errors #1382

1.7.13 (28 Feb 2018)

Bug fixes

	Schema#as_json returns a hash, not a GraphQL::Query::Result #1288

1.7.12 (13 Feb 2018)

Bug fixes

	typed_children should always return a Hash #1278

1.7.11 (13 Feb 2018)

Bug fixes

	Fix compatibility of irep_node.typed_children on leaf nodes #1277

1.7.10 (13 Feb 2018)

Breaking Changes

	Empty selections ({ }) are invalid in the GraphQL spec, but were previously allowed by graphql-ruby. They now return a parse error. #1268

Bug fixes

	Fix error when inline fragments are spread on scalars #1268

	Fix printing SDL when types have interfaces and directives #1255

1.7.9 (1 Feb 2018)

New Features

	Support block string inputs #1219

Bug fixes

	Fix deprecation regression in schema printer #1250

	Fix resource names in DataDog tracing #1208

	Fix passing context to multiplex in Query#result #1200

1.7.8 (11 Jan 2018)

New features

	Refactor Schema::Printer to use Language::Printer #1159

	Add ArgumentValue#default_used? and Arguments#default_used? #1152

Bug fixes

	Fix Scout Tracing #1187

	Call #inspect for EnumType::UnresolvedValueError #1179

	Parse empty field sets in IDL parser #1145

1.7.7 (29 Nov 2017)

New features

	Schema#to_document returns a Language::Nodes::Document #1134

	Add trace_scalars and trace: true|false to monitoring #1103

	Add Tracing::DataDogPlatform monitoring #1129

	Support namespaces in rails g graphql:function and :loader #1127

	Support serializer: option for ActionCableSubscriptions #1085

Bug fixes

	Properly count the column after a closing quote #1136

	Fix default value input objects in Schema.from_definition #1135

	Fix rails destroy graphql:mutation #1119

	Avoid unneeded query in RelationConnection with Sequel #1101

	Improve & document instrumentation stack behavior #1101

1.7.6 (13 Nov 2017)

Bug fixes

	Serialize symbols in with GraphQL::Subscriptions::Serialize #1084

1.7.5 (7 Nov 2017)

Breaking changes

	Rename Backtrace::InspectResult#inspect to #inspect_result #1022

New features

	Improved website search with Algolia #934

	Support customized generator directory #1047

	Recursively serialize GlobalID-compliant objects in Arrays and hashes #1030

	Add Subscriptions#build_id helper #1046

	Add #non_null? and #list? helper methods to type objects #1054

Bug fixes

	Fix infinite loop in query instrumentation when error is raised #1074

	Don’t try to trace error when it’s not raised during execution

	Improve validation of query variable definitions #1073

	Fix Scout tracing module load order #1064

1.7.4 (9 Oct 2017)

Deprecations

	GraphQL::Tracing.install is deprecated, use schema-local or query-local tracers instead #996

New features

	Add monitoring plugins for AppSignal, New Relic, Scout and Skylight #994, #1013

	Custom coercion errors for custom scalars #988

	Extra options for GraphQL::ExecutionError #1002

	Use GlobalID for subscription serialization when available #1004

	Schema- and query-local, threadsafe tracers #996

Bug fixes

	Accept symbol-keyed arguments to .trigger #1009

1.7.3 (20 Sept 2017)

Bug fixes

	Fix arguments on Query.__type field #978

	Fix Relay::Edge objects in Backtrace tables #975

1.7.2 (20 Sept 2017)

Bug fixes

	Correctly skip connections that return ctx.skip #972

1.7.1 (18 Sept 2017)

Bug fixes

	Properly release changes from 1.7.0

1.7.0 (18 Sept 2017)

Breaking changes

	GraphQL::Result is the returned from GraphQL execution. #898 Schema#execute and Query#result both return a GraphQL::Result. It implements Hash-like methods to preserve compatibility.

New features

	puts ctx.backtrace prints out a GraphQL backtrace table #946

	GraphQL::Backtrace.enable wraps unhandled errors with GraphQL backtraces #946

	GraphQL::Relay::ConnectionType.bidrectional_pagination = true turns on true bi-directional pagination checks for hasNextPage/hasPreviousPage fields. This will become the default behavior in a future version. #960

	Field arguments may be accessed as methods on the args object. This is an alternative to #[] syntax which provides did-you-mean behavior instead of returning nil on a typo. #924 For example:

using hash syntax:
args[:limit] # => 10
args[:limittt] # => nil
using method syntax:
args.limit # => 10
args.limittt # => NoMethodError

The old syntax is not deprecated.

	Improvements to schema filters #919

	If a type is not referenced by anything, it’s hidden

	If a type is an abstract type, but has no visible members, it’s hidden

	GraphQL::Argument.define builds re-usable arguments #948

	GraphQL::Subscriptions provides hooks for subscription platforms #672

	GraphQL::Subscriptions::ActionCableSubscriptions implements subscriptions over ActionCable #672

	More runtime values are accessble from a ctx object #923 :

	ctx.parent returns the ctx from the parent field

	ctx.object returns the current obj for that field

	ctx.value returns the resolved GraphQL value for that field

These can be used together, for example, ctx.parent.object to get the parent object.

	GraphQL::Tracing provides more hooks into gem internals for performance monitoring #917

	GraphQL::Result provides access to the original query and context after executing a query #898

Bug fixes

	Prevent passing both query string and parsed document to Schema#execute #957

	Prevent invalid names for types #947

1.6.8 (8 Sept 2017)

Breaking changes

	Validate against EnumType value names to match /^[_a-zA-Z][_a-zA-Z0-9]*$/ #915

New features

	Use stdlib forwardable when it’s not Ruby 2.4.0 #926

	Improve UnresolvedTypeError message #928

	Add a default field to the Rails generated mutation type #922

Bug fixes

	Find types via directive arguments when traversing the schema #944

	Assign #connection? when building a schema from IDL #941

	Initialize @edge_class to nil #942

	Disallow invalid enum values #915

	Disallow doubly-nested non-null types #916

	Fix Query#selected_operation_name when no selections are present #899

	Fix needless COUNT query for hasNextPage #906

	Fix negative offset with last argument #907

	Fix line/col for ArgumentsAreDefined validation #890

	Fix Sequel error when limit is 0 #892

1.6.7 (11 Aug 2017)

New features

	Add GraphQL.parse_file and AbstractNode#filename #873

	Support .graphql filepaths with Schema.from_definition #872

Bug fixes

	Fix variable usage inside non-null list #888

	Fix unqualified usage of ActiveRecord::Relation #885

	Fix FieldsWillMerge handling of equivalent input objects

	Fix to call prepare: on nested input types

1.6.6 (14 Jul 2017)

New features

	Validate graphql-pro downloads with rake graphql:pro:validate[$VERSION] #846

Bug fixes

	Remove usage of Rails-only Array.wrap #840

	Fix RelationConnection to count properly when relation contains an alias #838

	Print name of Enum type when a duplicate value is added #843

1.6.5 (13 Jul 2017)

Breaking changes

	Schema#types[](type_name) returns nil when there’s no type named type_name (it used to raise RuntimeError). To get an error for missing types, use .fetch instead, for example:

Old way:
MySchema.types[type_name] # => may raise RuntimeError
New way:
MySchema.types.fetch(type_name) # => may raise KeyError

	Schema build steps happen in one pass instead of two passes #819 . This means that instrument(:field) hooks may not access Schema#types, Schema#possible_types or Schema#get_field, since the underlying data hasn’t been prepared yet. There’s not really a clear upgrade path here. It’s a bit of a mess. If you’re affected by this, feel free to open an issue and we’ll try to find something that works!

Deprecations

	Schema#resolve_type is now called with (abstract_type, obj, ctx) instead of (obj, ctx) #834 . To update, add an unused parameter to the beginning of your resolve_type hook:

MySchema = GraphQL::Schema.define do
 # Old way:
 resolve_type ->(obj, ctx) { ... }
 # New way:
 resolve_type ->(type, obj, ctx) { ... }
end

New features

	rails g graphql:mutation will add Mutation boilerplate if it wasn’t added already #812

	InterfaceType and UnionType both accept resolve_type ->(obj, ctx) { ... } functions for type-specific resolution. This function takes precedence over Schema#resolve_type #829 #834

	Schema#resolve_type is called with three arguments, (abstract_type, obj, ctx), so you can distinguish object type based on interface or union.

	Query#operation_name= may be assigned during query instrumentation #833

	query.context.add_error(err) may be used to add query-level errors #833

Bug fixes

	argument(...) DSL accepts custom keywords #809

	Use single-query max_complexity overrides #812

	Return a client error when InputObjectType receives an array as input #803

	Properly handle raised errors in prepare functions #805

	Fix using as and prepare in argument do ... end blocks #817

	When types are added to the schema with instrument(:field, ...), make sure they’re in Schema#types #819

	Raise an error when duplicate EnumValue is created #831

	Properly resolve all query levels breadth-first when using lazy_resolve #835

	Fix tests to run on PostgresQL; Run CI on PostgresQL #814

	When no query string is present, return a client error instead of raising ArgumentError #833

	Properly validate lists containing variables #824

1.6.4 (20 Jun 2017)

New features

	Schema.to_definition sorts fields and arguments alphabetically #775

	validate: false skips static validations in query execution #790

Bug fixes

	graphql:install adds operation_name: params[:operationName] #786

	graphql:install skips graphiql-rails for API-only apps #772

	SerialExecution calls .is_a?(Skip) to avoid user-defined #== methods #794

	prepare: functions which return ExecutionError are properly handled when default values are present #801

1.6.3 (7 Jun 2017)

Bug fixes

	Run multiplex instrumentation when running a single query with a legacy execution strategy #766

	Check each strategy when looking for overridden execution strategy #765

	Correctly wrap Methods with BackwardsCompatibility #763

	Various performance improvements #764

	Don’t call #==(other) on user-provided objects (use .is_a? instead) #761

	Support lazy object from custom connection #edge_nodes #762

	If a lazy field returns an invalid null, stop evaluating its siblings #767

1.6.2 (2 Jun 2017)

New features

	Schema.define { default_max_page_size(...) } provides a Connection max_page_size when no other is provided #752

	Schema#get_field(type, field) accepts a string type name #756

	Schema.define { rescue_from(...) } accepts multiple error classes for the handler #758

Bug fixes

	Use *_execution_strategy when executing a single query (doesn’t support Schema#multiplex) #755

	Fix NameError when ActiveRecord isn’t loaded #747

	Fix Query#mutation? etc to support lazily-loaded AST #754

1.6.1 (28 May 2017)

New Features

	Query#selected_operation_name returns the operation to execute, even if it was inferred (not provided as operation_name:) #746

Bug fixes

	Return nil from Query#operation_name if no operation_name: was provided #746

1.6.0 (27 May 2017)

Breaking changes

	InternalRepresentation::Node#return_type will now return the wrapping type. Use return_type.unwrap to access the old value #704

	instrument(:query, ...) instrumenters are applied as a stack instead of a queue #735. If you depend on queue-based behavior, move your before_query and after_query hooks to separate instrumenters.

	In a Relay::Mutation, Raising or returning a GraphQL::Execution will nullify the mutation field, not the field’s children. #731

	args.to_h returns a slightly different hash #714

	keys are always Strings

	if an argument is aliased with as:, the alias is used as the key

	InternalRepresentation::Node#return_type includes the original “wrapper” types (non-null or list types), call .unwrap to get the inner type #20

before
irep_node.return_type
after
irep_node.return_type.unwrap

Deprecations

	Argument prepare functions which take one argument are deprecated #730

before
argument :id, !types.ID, prepare: ->(val) { ... }
after
argument :id, !types.ID, prepare: ->(val, ctx) { ... }

New features

	Schema#multiplex(queries) runs multiple queries concurrently #691

	GraphQL::RakeTask supports dumping the schema to IDL or JSON #687

	Improved support for Schema.from_definition #699 :

	Custom scalars are supported with coerce_input and coerce_result functions

	resolve_type function will be used for abstract types

	Default resolve behavior is to check obj for a method and call it with 0, 1, or 2 arguments.

	ctx.skip may be returned from field resolve functions to exclude the field from the response entirely #688

	instrument(:field, ..., after_built_ins: true) to apply field instrumentation after Relay wrappers #740

	Argument prepare functions are invoked with (val, ctx) (previously, it was only (val)) #730

	args.to_h returns stringified, aliased arguments #714

	ctx.namespace(:my_namespace) provides namespaced key-value storage #689

	GraphQL::Query can be initialized without a query_string; it can be added after initialization #710

	Improved filter support #713

	Schema.execute(only:, except:) accept a callable or an array of callables (multiple filters)

	Filters can be added to a query via Query#merge_filters(only:, except:). You can add a filter to every query by merging it in during query instrumentation.

Bug fixes

	Correctly apply cursors and max_page_size in Relay::RelationConnection and Relay::ArrayConnection #728

	Nullify a mutation field when it raises or returns an error #731

1.5.14 (27 May 2017)

New features

	UniqueWithinType Relay ID generator supports - in the ID #742

	assign_metadata_key assigns true when the definition method is called without arguments #724

	Improved lexer performance #737

Bug fixes

	Assign proper parent when a connection resolve returns a promise #736

1.5.13 (11 May 2017)

	Fix raising ExecutionError inside mutation resolve functions (it nullifies the field) #722

1.5.12 (9 May 2017)

	Fix returning nil from connection resolve functions (now they become null) #719

	Fix duplicate AST nodes when merging fragments #721

1.5.11 (8 May 2017)

New features

	Schema.from_definition accepts a parser: option (to work around lack of schema parser in graphql-libgraphqlparser) #712

	Query#internal_representation exposes an InternalRepresentation::Document #701

	Update generator usage of graphql-batch #697

Bug fixes

	Handle fragments with the same name as operations #706

	Fix type generator: ensure type name is camelized #718

	Fix Query#operation_name to return the operation name #707

	Fix pretty-print of non-null & list types #705

	Fix single input objects passed to list-type arguments #716

1.5.10 (25 Apr 2017)

New features

	Support Rails 5.1 #693

	Fall back to String#encode for non-UTF-8/non-ASCII strings #676

Bug Fixes

	Correctly apply Relay::Mutation’s return_field ... property: argument #692

	Handle Rails 5.1’s ActionController::Parameters #693

1.5.9 (19 Apr 2017)

Bug Fixes

	Include instrumentation-related changes in introspection result #681

1.5.8 (18 Apr 2017)

New features

	Use Relay PageInfo descriptions from graphql-js #673

Bug Fixes

	Allow fields with different arguments when fragments are included within inline fragments of non-overlapping types #680

	Run lazy_resolve instrumentation for connection fields #679

1.5.7 (14 Apr 2017)

Bug fixes

	InternalRepresentation::Node#definition returns nil instead of raising NoMethodError for operation fields #675

	Field#function is properly populated for fields derived from GraphQL::Functions #674

1.5.6 (9 Apr 2017)

Breaking Changes

	Returned strings which aren’t encoded as UTF-8 or ASCII will raise GraphQL::StringEncodingError instead of becoming nil #661

To preserve the previous behavior, Implement Schema#type_error to return nil for this error, eg:

GraphQL::Schema.define do
 type_error ->(err, ctx) {
 case err
 # ...
 when GraphQL::StringEncodingError
 nil
 end
 }

	coerce_non_null_input and validate_non_null_input are private #667

Deprecations

	One-argument coerce_input and coerce_result functions for custom scalars are deprecated. #667 Those functions now accept a second argument, ctx.

From
->(val) { val.to_i }
To:
->(val, ctx) { val.to_i }

	Calling coerce_result, coerce_input, valid_input? or validate_input without a ctx is deprecated. #667 Use coerce_isolated_result coerce_isolated_input, valid_isolated_input?, validate_input to explicitly bypass ctx.

New Features

	Include #types in GraphQL::Function #654

	Accept prepare: function for arguments #646

	Scalar coerce functions receive ctx #667

Bug Fixes

	Properly apply default values of false #658

	Fix application of argument options in GraphQL::Relay::Mutation #660

	Support concurrent-ruby >1.0.0 #663

	Only raise schema validation errors on #execute to avoid messing with Rails constant loading #665

1.5.5 (31 Mar 2017)

Bug Fixes

	Improve threadsafety of lazy_resolve cache, use Concurrent::Map if it’s available #631

	Properly handle unexpeced input objects #638

	Handle errors during definition by preseriving the definition #632

	Fix nil input for nullable list types #637, #639

	Handle invalid schema IDL with a validation error #647

	Properly serialize input object default values #635

	Fix as: on mutation input_field #650

	Fix null propagation for nil members of non-null list types #649

1.5.4 (22 Mar 2017)

Breaking Changes

	Stop supporting deprecated one-argument schema masks #616

Bug Fixes

	Return a client error for unknown variable types when default value is provided or when directives are present #627

	Fix validation performance regression on nested abstract fragment conditions #622, #624

	Put back InternalRepresentation::Node#parent and fix it for fragment fields #621

	Ensure enum names are strings #619

1.5.3 (20 Mar 2017)

Bug Fixes

	Fix infinite loop triggered by user input. #620 This query would cause an infinite loop:

query { ...frag }
fragment frag on Query { __typename }
fragment frag on Query { ...frag }

	Validate fragment name uniqueness #618

1.5.2 (16 Mar 2017)

Breaking Changes

	Parse errors are no longer raised to the application. #607 Instead, they’re returned to the client in the "errors" key. To preserve the previous behavior, you can implement Schema#parse_error to raise the error:

MySchema = GraphQL::Schema.define do
 # ...
 parse_error ->(err, ctx) { raise(err) }
end

New Features

	Add graphq:enum generator #611

	Parse errors are returned to the client instead of raised #607

Bug Fixes

	Handle negative cursor pagination args as 0 #612

	Properly handle returned GraphQL::ExecutionErrors from connection resolves #610

	Properly handle invalid nulls in lazy scalar fields #609

	Properly handle invalid input objects passed to enum arguments #604

	Fix introspection response of enum default values #605

	Allow Schema.from_definition default resolver hashes to have defaults #608

1.5.1 (12 Mar 2017)

Bug fixes

	Fix rewrite performance regressions from 1.5.0 #599

	Remove unused GraphQL::Execution::Lazy initialization API #597

1.5.0 (10 Mar 2017), yanked

Breaking changes

	Only UTF-8-encoded strings will be returned by String fields. Strings with other encodings (or objects whose #to_s method returns a string with a different encoding) will return nil instead of that string. #517

To opt into the previous behavior, you can modify GraphQL::STRING_TYPE:

app/graphql/my_schema.rb
Restore previous string behavior:
GraphQL::STRING_TYPE.coerce_result = ->(value) { value.to_s }

MySchema = GraphQL::Schema.define { ... }

	Substantial changes to the internal query representation (#512, #536). Query analyzers may notice some changes:

	Nodes skipped by directives are not visited

	Nodes are always on object types, so Node#owner_type always returns an object type. (Interfaces and Unions are replaced with concrete object types which are valid in the current scope.)

See changes to Analysis::QueryComplexity [https://github.com/rmosolgo/graphql-ruby/compare/v1.4.5...v1.5.0#diff-8ff2cdf0fec46dfaab02363664d0d201] for an example migration. Here are some other specific changes:

	Nodes are tracked on object types only, not interface or union types

	Deprecated, buggy Node#children and Node#path were removed

	Buggy #included was removed

	Nodes excluded by directives are entirely absent from the rewritten tree

	Internal InternalRepresentation::Selection was removed (no longer needed)

	Node#spreads was replaced by Node#ast_spreads which returns a Set

New features

	Schema#validate returns a list of errors for a query string #513

	implements ... adds interfaces to object types without inherit-by-default #548, #574

	GraphQL::Relay::RangeAdd for implementing RANGE_ADD mutations #587

	use ... definition method for plugins #565

	Rails generators #521, #580

	GraphQL::Function for reusable resolve behavior with arguments & return type #545

	Support for Ruby 2.4 #475

	Relay node & nodes field can be extended with a custom block #552

	Performance improvements:

	Resolve fragments only once when validating #504

	Reuse Arguments objects #500

	Skip needless FieldResults #482

	Remove overhead from ensure_defined #483

	Benchmark & Profile tasks for gem maintenance #520, #579

	Fetch has_next_page while fetching items in RelationConnection #556

	Merge selections on concrete object types ahead of time #512

	Support runnable schemas with Schema.from_definition #567, #584

Bug fixes

	Support different arguments on non-overlapping typed fragments #512

	Don’t include children of @skipped nodes when parallel branches are not skipped #536

	Fix offset in ArrayConnection when it’s larger than the array #571

	Add missing frozen_string_literal comments #589

1.4.5 (6 Mar 2017)

Bug Fixes

	When an operation name is provided but no such operation is present, return an error (instead of executing the first operation) #563

	Require unique operation names #563

	Require selections on root type #563

	If a non-null field returns null, don’t resolve any more sibling fields. #575

1.4.4 (17 Feb 2017)

New features

	Relay::Node.field and Relay::Node.plural_field accept a custom resolve: argument #550

	Relay::BaseConnection#context provides access to the query context #537

	Allow re-assigning Field#name #541

	Support return_interfaces on Relay::Mutations #533

	BaseType#to_definition stringifies the type to IDL #539

	argument ... as: can be used to alias an argument inside the resolve function #542

Bug fixes

	Fix negative offset from cursors on PostgresQL #510

	Fix circular dependency issue on .connection_types #535

	Better error when Relay::Mutation.resolve doesn’t return a Hash

1.4.3 (8 Feb 2017)

New features

	GraphQL::Relay::Node.plural_field finds multiple nodes by UUID #525

Bug fixes

	Properly handle errors from lazy mutation results #528

	Encode all parsed strings as UTF-8 #516

	Improve error messages #501 #519

1.4.2 (23 Jan 2017)

Bug fixes

	Absent variables aren’t present in args (again!) #494

	Ensure definitions were executed when accessing Field#resolve_proc #502 (This could have caused errors when multiple instrumenters modified the same field in the schema.)

1.4.1 (16 Jan 2017)

Bug fixes

	Absent variables aren’t present in args #479

	Fix grouped ActiveRecord relation with last only #476

	Schema#default_mask & query only:/except: are combined, not overriden #485

	Root types can be hidden with dynamic filters #480

1.4.0 (8 Jan 2017)

Breaking changes

Deprecations

	One-argument schema filters are deprecated. Schema filters are now called with two arguments, (member, ctx). #463 To update, add a second argument to your schema filter.

	The arity of middleware #call methods has changed. Instead of next_middleware being the last argument, it is passed as a block. To update, call yield to continue the middleware chain or use &next_middleware to capture next_middleware into a local variable.

Previous:
def call(*args, next_middleware)
 next_middleware.call
end

Current
def call(*args)
 yield
end
Or
def call(*args, &next_middleware)
 next_middleware.call
end

New features

	You can add a nodes field directly to a connection. #451 That way you can say { friends { nodes } } instead of { freinds { edges { node } } }. Either pass nodes_field: true when defining a custom connection type, for example:

FriendsConnectionType = FriendType.define_connection(nodes_field: true)

Or, set GraphQL::Relay::ConnectionType.default_nodes_field = true before defining your schema, for example:

GraphQL::Relay::ConnectionType.default_nodes_field = true
MySchema = GraphQL::Schema.define { ... }

	Middleware performance was dramatically improved by reducing object allocations. #462 next_middleware is now passed as a block. In general, yield is faster than calling a captured block [https://github.com/JuanitoFatas/fast-ruby#proccall-and-block-arguments-vs-yieldcode].

	Improve error messages for wrongly-typed variable values #423

	Cache the value of resolve_type per object per query #462

	Pass ctx to schema filters #463

	Accept whitelist schema filters as only: #463

	Add Schema#to_definition which accepts only:/except: to filter the schema when printing #463

	Add Schema#default_mask as a default except: filter #463

	Add reflection methods to types #473

	#introspection? marks built-in introspection types

	#default_scalar? marks built-in scalars

	#default_relay? marks built-in Relay types

	#default_directive? marks built-in directives

Bug fixes

	Fix ArrayConnection: gracefully handle out-of-bounds cursors #452

	Fix ArrayConnection & RelationConnection: properly handle last without before #362

1.3.0 (8 Dec 2016)

Deprecations

	As per the spec, __ prefix is reserved for built-in names only. This is currently deprecated and will be invalid in a future version. #427, #450

New features

	Schema#lazy_resolve allows you to define handlers for a second pass of resolution #386

	Field#lazy_resolve can be instrumented to track lazy resolution #429

	Schema#type_error allows you to handle InvalidNullErrors and UnresolvedTypeErrors in your own way #416

	Schema#cursor_encoder can be specified for transforming cursors from built-in Connection implementations #345

	Schema members #dup correctly: they shallowly copy their state into new instances #444

	Query#provided_variables is now public #430

Bug fixes

	Schemas created from JSON or strings with custom scalars can validate queries (although they still can’t check if inputs are valid for those custom scalars) #445

	Always use quirks_mode: true when serializing values (to support non-stdlib JSONs) #449

	Calling #redefine on a Schema member copies state outside of previous #define blocks (uses #dup) #444

1.2.6 (1 Dec 2016)

Bug fixes

	Preserve connection behaviors after redefine #421

	Implement respond_to_missing? on DefinedObjectProxy (which is self inside .define { ... }) #414

1.2.5 (22 Nov 2016)

Breaking changes

	Visitor received some breaking changes, though these are largely-private APIs (#401):

	Global visitor hooks (Visitor#enter and Visitor#leave) have been removed

	Returning SKIP from a visitor hook no longer skips sibling nodes

New features

	Schema#instrument may be called outside of Schema.define #399

	Validation: assert that directives on a node are unique #409

	instrument(:query) hooks are executed even if the query raises an error #412

Bug fixes

	Mutation#input_fields should trigger lazy definition #392

	ObjectType#connection doesn’t modify the provided GraphQL::Field #411

	Mutation#resolve may return a GraphQL::ExecutionError #405

	Arguments can handle nullable arguments passed as nil #410

1.2.4 (14 Nov 2016)

Bug fixes

	For invalid enum values, print the enum name in the error message (not a Ruby object dump) #403

	Improve detection of invalid UTF-8 escapes #394

1.2.3 (14 Nov 2016)

Bug fixes

	Lexer previous token should be a local variable, not a method attribute #396

	Arguments should wrap values according to their type, not their value #398

1.2.2 (7 Nov 2016)

New features

	Schema.execute raises an error if variables: is a string

Bug fixes

	Dynamic fields __schema, __type and __typename are properly validated #391

1.2.1 (7 Nov 2016)

Bug fixes

	Implement Query::Context#strategy and FieldResolutionContext#strategy to support GraphQL::Batch #382

1.2.0 (7 Nov 2016)

Breaking changes

	A breaking change from 1.1.0 was reverted: two-character "\\u" is longer treated as the Unicode escape character #372

	Due to the execution bug described below, the internal representation of a query has changed. Although Node responds to the same methods, tree is built differently and query analyzers visit it differently. #373, #379

The difference is in cases like this:

outer {
 ... on A { inner1 { inner2 } }
 ... on B { inner1 { inner3 } }
}

Previously, visits would be:

	outer, which has one child:

	inner1, which has two definitions (one on A, another on B), then visit its two children:

	inner2 which has one definition (on the return type of inner1)

	inner3 which has one definition (on the return type of inner1)

This can be wrong for some cases. For example, if A and B are mutually exclusive (both object types, or union types with no shared members), then inner2 and inner3 will never be executed together.

Now, the visit goes like this:

	outer which has two entries in typed_children, one on A and another on B. Visit each typed_chidren branch:

	inner1, then its one typed_children branch:

	inner2

	inner1, then its one typed_children branch:

	inner3

As you can see, we visit inner1 twice, once for each type condition. inner2 and inner3 are no longer visited as siblings. Instead they’re visited as … cousins? (They share a grandparent, not a parent.)

Although Node#children is still present, it may not contain all children actually resolved at runtime, since multiple typed_children branches could apply to the same runtime type (eg, two branches on interface types can apply to the same object type). To track all children, you have to do some bookkeeping during visitation, see QueryComplexity for an example.

You can see PR #373 for how built-in analyzers were changed to reflect this.

Deprecations

	InternalRepresentation::Node#children and InternalRepresentation::Node#definitions are deprecated due to the bug described below and the breaking change described above. Instead, use InternalRepresentation::Node#typed_children and InternalRepresentation::Node#defininition. #373

New features

	null support for the whole library: as a query literal, variable value, and argument default value. To check for the presence of a nullable, use Arguments#key? #369

	GraphQL::Schema::UniqueWithinType.default_id_separator may be assigned to a custom value #381

	Context#add_error(err) may be used to add a GraphQL::ExecutionError to the response’s "errors" key (and the resolve function can still return a value) #367

	The third argument of resolve is now a FieldResolutionContext, which behaves just like a Query::Context, except that it is not modified during query execution. This means you can capture a reference to that context and access some field-level details after the fact: #path, #ast_node, #irep_node. (Other methods are delegated to the underlying Query::Context) #379

	TimeoutMiddleware’s second argument is a proxied query object: it’s #context method returns the FieldResolutionContext (see above) for the timed-out field. Other methods are delegated to the underlying Query #379

Bug fixes

	Fix deep selection merging on divergently-typed fragments. #370, #373, #379 Previously, nested selections on different fragments were not distinguished. Consider a case like this:

... on A { inner1 { inner2 } }
... on B { inner1 { inner3 } }

Previously, an object of type A would resolve inner1, then the result would receive both inner2 and inner3. The same was true for an object of type B.

Now, those are properly distinguished. An object of type A resolves inner1, then its result receives inner2. An object of type B receives inner1, then inner3.

1.1.0 (1 Nov 2016)

Breaking changes

	Two-character "\\u" is no longer treated as the Unicode escape character, only the Unicode escape character "\u" is treated that way. (This behavior was a bug, the migration path is to use the Unicode escape character.) #366

	GraphQL::Language::ParserTests was removed, use GraphQL::Compatibility instead. #366

	Non-null arguments can’t be defined with default values, because those values would never be used #361

New features

	Schema.from_definition(definition_string) builds a GraphQL::Schema out of a schema definition. #346

	Schema members (types, fields, arguments, enum values) can be hidden on a per-query basis with the except: option #300

	GraphQL::Compatibility contains .build_suite functions for testing user-provided parsers and execution strategies with GraphQL internals. #366

	Schema members respond to #redefine { ... } for making shallow copies with extended definitions. #357

	Schema#instrument provides an avenue for observing query and field resolution with no overhead.

	Some SerialExecution objects were converted to functions, resulting in a modest performance improvement for query resolution.

Bug fixes

	NonNullType and ListType have no name (nil), as per the spec #355

	Non-null arguments can’t be defined with default values, because those values would never be used #361

1.0.0 (25 Oct 2016)

Breaking changes

	validate: false option removed from Schema.execute (it didn’t work anyways) #338

	Some deprecated methods were removed: #349

	BaseConnection#object was removed, use BaseConnection#nodes

	BaseConnection.connection_for_items was removed, use BaseConnection#connection_for_nodes

	Two-argument resolve functions for Relay::Mutations are not supported, use three arguments instead: (root_obj, input, ctx)

	Schema.new no longer accepts initialization options, use Schema.define instead

	GraphQL::ObjectType::UnresolvedTypeError was removed, use GraphQL::UnresolvedTypeError instead

	Fragment type conditions should be parsed as TypeName nodes, not strings. (Users of graphql-libgraphqlparser should update to 1.0.0 of that gem.) #342

New Features

	Set ast_node and irep_node on query context before sending it to middleware #348

	Enum values can be extended with .define #341

Bug Fixes

	Use RelationConnection for Rails 3 relations (which also extend Array) #343

	Fix schema printout when arguments have comments #335

0.19.4 (18 Oct 2016)

Breaking changes

	Relay::BaseConnection#order was removed (it always returned nil) #313

	In the IDL, Interface names & Union members are parsed as TypeName nodes instead of Strings #322

New features

	Print and parse descriptions in the IDL #305

	Schema roots from IDL are omitted when their names match convention #320

	Don’t add rescue_middleware to a schema if it’s not using rescue_from #328

	Query::Arguments#each_value yields Query::Argument::ArgumentValue instances which contain key, value and argument definition #331

Bug fixes

	Use JSON.generate(val, quirks_mode: true) for compatibility with other JSON implementations #316

	Improvements for compatibility with 1.9.3 branch #315 #314 #313

	Raise a descriptive error when calculating a cursor for a node which isn’t present in the connection’s members #327

0.19.3 (13 Oct 2016)

Breaking Changes

	GraphQL::Query::Arguments.new requires argument_definitions: of type {String => GraphQL::Argument } #304

Deprecations

	Relay::Mutation#resolve has a new signature. #301

Previously, it was called with two arguments:

resolve ->(inputs, ctx) { ... }

Now, it’s called with three inputs:

resolve ->(obj, inputs, ctx) { ... }

obj is the value of root_value: given to Schema#execute, as with other root-level fields.

Two-argument resolvers are still supported, but they are deprecated and will be removed in a future version.

New features

	Relay::Mutation accepts a user-defined return_type #310

	Relay::Mutation#resolve receives the root_value passed to Schema#execute #301

	Derived Relay objects have descriptions #303

Bug fixes

	Introspection query is 7 levels deep instead of 3 #308

	Unknown variable types cause validation errors, not runtime errors #310

	Query::Arguments doesn’t wrap hashes from parsed scalars (fix for user-defined “JSONScalar”) #304

0.19.2 (6 Oct 2016)

New features

	If a list entry has a GraphQL::ExecutionError, replace the entry with nil and return the error #295

Bug fixes

	Support graphql-batch rescuing InvalidNullErrors #296

	Schema printer prints Enum names, not Ruby values for enums #297

0.19.1 (4 Oct 2016)

Breaking changes

	Previously-deprecated InterfaceType#resolve_type hook has been removed, use Schema#resolve_type instead #290

New features

	Eager-load schemas at definition time, validating types & schema-level hooks #289

	InvalidNullErrors contain the type & field name that returned null #293

	If an object is resolved with Schema#resolve_type and the resulting type is not a member of the expected possible types, raise an error #291

Bug fixes

	Allow directive as field or argument name #288

0.19.0 (30 Sep 2016)

Breaking changes

	GraphQL::Relay::GlobalNodeIdentification was removed. Its features were moved to GraphQL::Schema or GraphQL::Relay::Node. The new hooks support more robust & flexible global IDs. #243

	Relay’s "Node" interface and node(id: "...") field were both moved to GraphQL::Relay::Node. To use them in your schema, call .field and .interface. For example:

Adding a Relay-compliant `node` field:
field :node, GraphQL::Relay::Node.field

This object type implements Relay's `Node` interface:
interfaces [GraphQL::Relay::Node.interface]

	UUID hooks were renamed and moved to GraphQL::Schema. You should define id_from_object and object_from_id in your Schema.define { ... } block. For example:

MySchema = GraphQL::Schema.define do
 # Fetch an object by UUID
 object_from_id ->(id, ctx) {
 MyApp::RelayLookup.find(id)
 }
 # Generate a UUID for this object
 id_from_object ->(obj, type_defn, ctx) {
 MyApp::RelayLookup.to_id(obj)
 }
end

	The new hooks have no default implementation. To use the previous default, use GraphQL::Schema::UniqueWithinType, for example:

MySchema = GraphQL::Schema.define do
 object_from_id ->(id, ctx) {
 # Break the id into its parts:
 type_name, object_id = GraphQL::Schema::UniqueWithinType.decode(id)
 # Fetch the identified object
 # ...
 }

 id_from_object ->(obj, type_defn, ctx) {
 # Provide the the type name & the object's `id`:
 GraphQL::Schema::UniqueWithinType.encode(type_defn.name, obj.id)
 }
end

If you were using a custom id_separator, it’s now accepted as an input to UniqueWithinType’s methods, as separator:. For example:

use "---" as a ID separator
GraphQL::Schema::UniqueWithinType.encode(type_name, object_id, separator: "---")
GraphQL::Schema::UniqueWithinType.decode(relay_id, separator: "---")

	type_from_object was previously deprecated and has been replaced by Schema#resolve_type. You should define this hook in your schema to return a type definition for a given object:

MySchema = GraphQL::Schema.define do
 # ...
 resolve_type ->(obj, ctx) {
 # based on `obj` and `ctx`,
 # figure out which GraphQL type to use
 # and return the type
 }
end

	Schema#node_identification has been removed.

	Argument default values have been changed to be consistent with InputObjectType default values. #267

Previously, arguments expected GraphQL values as default_values. Now, they expect application values. (InputObjectTypes always worked this way.)

Consider an enum like this one, where custom values are provided:

PowerStateEnum = GraphQL::EnumType.define do
 name "PowerState"
 value("ON", value: 1)
 value("OFF", value: 0)
end

Previously, enum names were provided as default values, for example:

field :setPowerState, PowerStateEnum do
 # Previously, the string name went here:
 argument :newValue, default_value: "ON"
end

Now, enum values are provided as default values, for example:

field :setPowerState, PowerStateEnum do
 # Now, use the application value as `default_value`:
 argument :newValue, default_value: 1
end

Note that if you don’t have custom values, then there’s no change, because the name and value are the same.

Here are types that are affected by this change:

	Custom scalars (previously, the default_value was a string, now it should be the application value, eg Date or BigDecimal)

	Enums with custom value:s (previously, the default_value was the name, now it’s the value)

If you can’t replace default_values, you can also use a type’s #coerce_input method to translate a GraphQL value into an application value. For example:

Using a custom scalar, "Date"
PREVIOUSLY, provide a string:
argument :starts_on, DateType, default_value: "2016-01-01"
NOW, transform the string into a Date:
argument :starts_on, DateType, default_value: DateType.coerce_input("2016-01-01")

New features

	Support @deprecated in the Schema language #275

	Support directive definitions in the Schema language #280

	Use the same introspection field descriptions as graphql-js #284

Bug fixes

	Operation name is no longer present in execution error "path" values #276

	Default values are correctly dumped & reloaded in the Schema language #267

0.18.15 (20 Sep 2016)

Breaking changes

	Validation errors no longer have a "path" key in their JSON. It was renamed to "fields" #264

	@skip and @include over multiple selections are handled according to the spec: if the same field is selected multiple times and one or more of them would be included, the field will be present in the response. Previously, if one or more of them would be skipped, it was absent from the response. #256

New features

	Execution errors include a "path" key which points to the field in the response where the error occurred. #259

	Parsing directives from the Schema language is now supported #273

Bug fixes

	@skip and @include over multiple selections are now handled according to the spec #256

0.18.14 (20 Sep 2016)

Breaking changes

	Directives are no longer considered as “conflicts” in query validation. This is in conformity with the spec, but a change for graphql-ruby #263

Features

	Query analyzers may emit errors by raising GraphQL::AnalysisErrors during #call or returning a single error or an array of errors from #final_value #262

Bug fixes

	Merge fields even when @skip / @include are not identical #263

	Fix possible infinite loop in FieldsWillMerge validation #261

0.18.13 (19 Sep 2016)

Bug fixes

	Find infinite loops in nested contexts, too #258

0.18.12 (19 Sep 2016)

New features

	GraphQL::Analysis::FieldUsage can be used to check for deprecated fields in the query analysis phase #245

Bug fixes

	If a schema receives a query on mutation or subscription but that root doesn’t exist, return a validation error #254

	Query::Arguments#to_h only includes keys that were provided in the query or have a default value #251

0.18.11 (11 Sep 2016)

New features

	GraphQL::Language::Nodes::Document#slice(operation_name) finds that operation and its dependencies and puts them in a new Document #241

Bug fixes

	Validation errors for non-existent fields have the location of the field usage, not the parent field #247

	Properly require "forwardable" #242

	Remove ALLOWED_CONSTANTS for boolean input, use a plain comparison #240

0.18.10 (9 Sep 2016)

New features

	Assign #mutation on objects which are derived from a Relay::Mutation #239

0.18.9 (6 Sep 2016)

Bug fixes

	fix backward compatibility for type_from_object #238

0.18.8 (6 Sep 2016)

New features

	AST nodes now respond to #eql?(other) to test value equality #231

Bug fixes

	The connection helper no longer adds a duplicate field #235

0.18.7 (6 Sep 2016)

New features

	Support parsing nameless fragments (but not executing them) #232

Bug fixes

	Allow __type(name: "Whatever") to return null, as per the spec #233

	Include a Relay mutation’s description with a mutation field #225

0.18.6 (29 Aug 2016)

New features

	GraphQL::Schema::Loader.load(schema_json) turns an introspection result into a GraphQL::Schema #207

	.define accepts plural definitions for: object fields, interface fields field arguments, enum values #222

0.18.5 (27 Aug 2016)

Deprecations

	Schema.new is deprecated; use Schema.define instead.

Before:

schema = GraphQL::Schema.new(
 query: QueryType,
 mutation: MutationType,
 max_complexity: 100,
 types: [ExtraType, OtherType]
)
schema.node_identification = MyGlobalID
schema.rescue_from(ActiveRecord::RecordNotFound) { |err| "..." }

After:

schema = GraphQL::Schema.define do
 query QueryType
 mutation MutationType
 max_complexity 100
 node_identification MyGlobalID
 rescue_from(ActiveRecord::RecordNotFound) { |err| "..." }
 # Types was renamed to `orphan_types` to avoid conflict with the `types` helper
 orphan_types [ExtraType, OtherType]
end

This unifies the disparate methods of configuring a schema and provides new, more flexible design space. It also adds #metadata to schemas for user-defined storage.

	UnionType#resolve_type, InterfaceType#resolve_type, and GlobalNodeIdentification#type_from_object are deprecated, unify them into Schema#resolve_type instead.

Before:

GraphQL::Relay::GlobalNodeIdentification.define do
 type_from_object ->(obj) { ... }
end

GraphQL::InterfaceType.define do
 resolve_type ->(obj, ctx) { ... }
end

After:

GraphQL::Schema.define do
 resolve_type ->(obj, ctx) { ... }
end

This simplifies type inference and prevents unexpected behavior when different parts of the schema resolve types differently.

New features

	Include expected type in Argument errors #221

	Define schemas with Schema.define #208

	Define a global object-to-type function with Schema#resolve_type #216

Bug fixes

0.18.4 (25 Aug 2016)

New features

	InvalidNullErrors expose a proper #message #217

Bug fixes

	Return an empty result for queries with no operations #219

0.18.3 (22 Aug 2016)

Bug fixes

	Connection.new(:field) is optional, not required #215

	0.18.2 introduced a more restrictive approach to resolving interfaces & unions; revert that approach #212

0.18.2 (17 Aug 2016)

New features

	Connection objects expose the GraphQL::Field that created them via Connection#field #206

0.18.1 (7 Aug 2016)

Deprecations

	Unify Relay naming around nodes as the items of a connection:

	Relay::BaseConnection.connection_for_nodes replaces Relay::BaseConnection.connection_for_items

	Relay::BaseConnection#nodes replaces Relay::BaseConnection#object

New features

	Connection fields’ .resolve_proc is an instance of Relay::ConnectionResolve #204

	Types, fields and arguments can store arbitrary values in their metadata hashes #203

0.18.0 (4 Aug 2016)

Breaking changes

	graphql-relay has been merged with graphql, you should remove graphql-relay from your gemfile. #195

Deprecations

New features

	GraphQL.parse can turn schema definitions into a GraphQL::Language::Nodes::Document. The document can be stringified again with Document#to_query_string #191

	Validation errors include a path to the part of the query where the error was found #198

	.define also accepts keywords for each helper method, eg GraphQL::ObjectType.define(name: "PostType", ...)

Bug fixes

	global_id_fields have default complexity of 1, not nil

	Relay pageInfo is correct for connections limited by max_page_size

	Rescue invalid variable errors & missing operation name errors during query analysis

0.17.2 (26 Jul 2016)

Bug fixes

	Correctly spread fragments when nested inside other fragments #194

0.17.1 (26 Jul 2016)

Bug fixes

	Fix InternalRepresentation::Node#inspect

0.17.0 (21 Jul 2016)

Breaking changes

	InternalRepresentation::Node API changes:

	#definition_name returns the field name on field nodes (while #name may have an alias)

	#definitions returns {type => field} pairs for possible fields on this node

	#definition is gone, it is equivalent to node.definitions.values.first

	#on_types is gone, it is equivalent to node.definitions.keys

New features

	Accept hash_key: field option

	Call .define { } block lazily, so -> { } is not needed for circular references #182

Bug fixes

	Support on as an Enum value

	If the same field is requested on multiple types, choose the maximum complexity among them (not the first)

0.16.1 (20 Jul 2016)

Bug fixes

	Fix merging fragments on Union types (see #190, broken from #180)

0.16.0 (14 Jul 2016)

Breaking changes & deprecations

	I don’t know that this breaks anything, but GraphQL::Query::SerialExecution now iterates over a tree of GraphQL::InternalRepresentation::Nodes instead of an AST (GraphQL::Language::Nodes::Document).

New features

	Query context keys can be assigned with Context#[]= #178

	Cancel further field resolution with TimeoutMiddleware #179

	Add GraphQL::InternalRepresentation for normalizing queries from AST #180

	Analyze the query before running it #180

	Assign complexity cost to fields, enforce max complexity before running it #180

	Log max complexity or max depth with MaxComplexity or MaxDepth analyzers #180

	Query context exposes #irep_node, the internal representation of the current node #180

Bug fixes

	Non-null errors are propagated to the next nullable field, all the way up to data #174

0.15.3 (28 Jun 2016)

New features

	EnumValues can receive their properties after instantiation #171

0.15.2 (16 Jun 2016)

New features

	Support lazy type arguments in Object’s interfaces and Union’s possible_types #169

Bug fixes

	Support single-member Unions, as per the spec #170

0.15.1 (15 Jun 2016)

Bug fixes

	Whitelist operation types in lexer.rb

0.15.0 (11 Jun 2016)

Breaking changes & deprecations

	Remove debug: option, propagate all errors. #161

0.14.1 (11 Jun 2016)

Breaking changes & deprecations

	debug: is deprecated (#165). Propagating errors (debug: true) will become the default behavior. You can get a similar implementation of error gobbling with CatchallMiddleware. Add it to your schema:

MySchema.middleware << GraphQL::Schema::CatchallMiddleware

New features

Bug fixes

	Restore previous introspection fields on DirectiveType as deprecated #164

	Apply coercion to input default values #162

	Proper Enum behavior when a value isn’t found

0.14.0 (31 May 2016)

Breaking changes & deprecations

New features

	GraphQL::Language::Nodes::Document#to_query_string will re-serialize a query AST #151

	Accept root_value: when running a query #157

	Accept a GraphQL::Language::Nodes::Document to Query.new (this allows you to cache parsed queries on the server) #152

Bug fixes

	Improved parse error messages #149

	Improved build-time validation #150

	Raise a meaningful error when a Union or Interface can’t be resolved during query execution #155

0.13.0 (29 Apr 2016)

Breaking changes & deprecations

	“Dangling” object types are not loaded into the schema. The must be passed in GraphQL::Schema.new(types: [...]). (This was deprecated in 0.12.1)

New features

	Update directive introspection to new spec #121

	Improved schema validation errors #113

	20x faster parsing #119

	Support inline fragments without type condition #123

	Support multiple schemas composed of the same types #142

	Accept argument description and default_value in the block #138

	Middlewares can send new arguments to subsequent middlewares #129

Bug fixes

	Don’t leak details of internal errors #120

	Default query context to {} #133

	Fixed list nullability validation #131

	Ensure field names are strings #128

	Fix @skip and @include implementation #124

	Interface membership is not shared between schemas #142

0.12.1 (26 Apr 2016)

Breaking changes & deprecations

	Connecting object types to the schema only via interfaces is deprecated. It will be unsupported in the next version of graphql.

Sometimes, object type is only connected to the Query (or Mutation) root by being a member of an interface. In these cases, bugs happen, especially with Rails development mode. (And sometimes, the bugs don’t appear until you deploy to a production environment!)

So, in a case like this:

HatInterface = GraphQL::ObjectType.define do
 # ...
end

FezType = GraphQL::ObjectType.define do
 # ...
 interfaces [HatInterface]
end

QueryType = GraphQL::ObjectType.define do
 field :randomHat, HatInterface # ...
end

FezType can only be discovered by QueryType through HatInterface. If fez_type.rb hasn’t been loaded by Rails, HatInterface.possible_types will be empty!

Now, FezType must be passed to the schema explicitly:

Schema.new(
 # ...
 types: [FezType]
)

Since the type is passed directly to the schema, it will be loaded right away!

New features

Bug fixes

0.12.0 (20 Mar 2016)

Breaking changes & deprecations

	GraphQL::DefinitionConfig was replaced by GraphQL::Define #116

	Many scalar types are more picky about which inputs they allow (#115). To get the previous behavior, add this to your program:

Previous coerce behavior for scalars:
GraphQL::BOOLEAN_TYPE.coerce = ->(value) { !!value }
GraphQL::ID_TYPE.coerce = ->(value) { value.to_s }
GraphQL::STRING_TYPE.coerce = ->(value) { value.to_s }
INT_TYPE and FLOAT_TYPE were unchanged

	GraphQL::Fields can’t be renamed because #resolve may depend on that name. (This was only a problem if you pass the same GraphQL::Field instance to field ... field: definitions.)

	GraphQL::Query::DEFAULT_RESOLVE was removed. GraphQL::Field#resolve handles that behavior.

New features

	Can override max_depth: from Schema#execute

	Base GraphQL::Error for all graphql-related errors

Bug fixes

	Include "" for String default values (so it’s encoded as a GraphQL string literal)

0.11.1 (6 Mar 2016)

New features

	Schema max_depth: option #110

	Improved validation errors for input objects #104

	Interfaces provide field implementations to object types #108

0.11.0 (28 Feb 2016)

Breaking changes & deprecations

	GraphQL::Query::BaseExecution was removed, you should probably extend SerialExecution instead #96

	GraphQL::Language::Nodes members no longer raise if they don’t get inputs during initialize #92

	GraphQL.parse no longer accepts as: for parsing partial queries. #92

New features

	Field#property & Field#property= can be used to access & modify the method that will be sent to the underlying object when resolving a field #88

	When defining a field, you can pass a string for as type. It will be looked up in the global namespace.

	Query::Arguments#to_h unwraps Arguments objects recursively

	If you raise GraphQL::ExecutionError during field resolution, it will be rescued and the message will be added to the response’s errors key. #93

	Raise an error when non-null fields are nil #94

Bug fixes

	Accept Rails params as input objects

	Don’t get a runtime error when input contains unknown key #100

0.10.9 (15 Jan 2016)

Bug fixes

	Handle re-assignment of ObjectType#interfaces #84

	Fix merging queries on interface-typed fields #85

0.10.8 (14 Jan 2016)

Bug fixes

	Fix transform of nested lists #79

	Fix parse & transform of escaped characters #83

0.10.7 (22 Dec 2015)

New features

	Support Rubinius

Bug fixes

	Coerce values into one-item lists for ListTypes

0.10.6 (20 Dec 2015)

Bug fixes

	Remove leftover putses

0.10.5 (19 Dec 2015)

Bug fixes

	Accept enum value description in definition #71

	Correctly parse empty input objects #75

	Correctly parse arguments preceded by newline

	Find undefined input object keys during static validation

0.10.4 (24 Nov 2015)

New features

	Add Arguments#to_h #66

Bug fixes

	Accept argument description in definition

	Correctly parse empty lists

0.10.3 (11 Nov 2015)

New features

	Support root-level subscription type

Bug fixes

	Require Set for Schema::Printer

0.10.2 (10 Nov 2015)

Bug fixes

	Handle blank strings in queries

	Raise if a field is configured without a proper type #61

0.10.1 (22 Oct 2015)

Bug fixes

	Properly merge fields on fragments within fragments

	Properly delegate enumerable-ish methods on Arguments #56

	Fix & refactor literal coersion & validation #53

0.10.0 (17 Oct 2015)

New features

	Scalars can have distinct coerce_input and coerce_result methods #48

	Operations don’t require a name #54

Bug fixes

	Big refactors and fixes to variables and arguments:

	Correctly apply argument default values

	Correctly apply variable default values

	Raise at execution-time if non-null variables are missing

	Incoming values are coerced to their proper types before execution

0.9.5 (1 Oct 2015)

New features

	Add Schema#middleware to wrap field access

	Add RescueMiddleware to handle errors during field execution

	Add Schema::Printer for printing the schema definition #45

Bug fixes

0.9.4 (22 Sept 2015)

New features

	Fields can return GraphQL::ExecutionErrors to add errors to the response

Bug fixes

	Fix resolution of union types in some queries #41

0.9.3 (15 Sept 2015)

New features

	Add Schema#execute shorthand for running queries

	Merge identical fields in fragments so they’re only resolved once #34

	An error during parsing raises GraphQL::ParseError #33

Bug fixes

	Find nested input types in TypeReducer #35

	Find variable usages inside fragments during static validation

0.9.2, 0.9.1 (10 Sept 2015)

Bug fixes

	remove Celluloid dependency

0.9.0 (10 Sept 2015)

Breaking changes & deprecations

	remove GraphQL::Query::ParallelExecution (use graphql-parallel [https://github.com/rmosolgo/graphql-parallel])

0.8.1 (10 Sept 2015)

Breaking changes & deprecations

	GraphQL::Query::ParallelExecution has been extracted to graphql-parallel [https://github.com/rmosolgo/graphql-parallel]

0.8.0 (4 Sept 2015)

New features

	Async field resolution with context.async { ... }

	Access AST node during resolve with context.ast_node

Bug fixes

	Fix for validating arguments returning up too soon

	Raise if you try to define 2 types with the same name

	Raise if you try to get a type by name but it doesn’t exist

0.7.1 (27 Aug 2015)

Bug fixes

	Merge nested results from different fragments instead of using the latest one only

0.7.0 (26 Aug 2015)

Breaking changes & deprecations

	Query keyword argument params: was removed, use variables: instead.

Bug fixes

	@skip has precedence over @include

	Handle when DEFAULT_RESOVE returns nil

0.6.2 (20 Aug 2015)

Bug fixes

	Fix whitespace parsing in input objects

0.6.1 (16 Aug 2015)

New features

	Parse UTF-8 characters & escaped characters

Bug fixes

	Properly parse empty strings

	Fix argument / variable compatibility validation

0.6.0 (14 Aug 2015)

Breaking changes & deprecations

	Deprecate params option to Query#new in favor of variables

	Deprecated .new { |obj, types, fields, args| } API was removed (use .define)

New features

	Query#new accepts operation_name argument

	InterfaceType and UnionType accept resolve_type configs

Bug fixes

	Gracefully handle blank-string & whitespace-only queries

	Handle lists in variable definitions and arguments

	Handle non-null input types

0.5.0 (12 Aug 2015)

Breaking changes & deprecations

	Deprecate definition API that yielded a bunch of helpers #18

New features

	Add new definition API #18

graphql [image: graphql-ruby]

[image: Build Status] [https://travis-ci.org/rmosolgo/graphql-ruby]
[image: Gem Version] [https://rubygems.org/gems/graphql]
[image: Code Climate] [https://codeclimate.com/github/rmosolgo/graphql-ruby]
[image: Test Coverage] [https://codeclimate.com/github/rmosolgo/graphql-ruby]
[image: built with love] [http://rmosolgo.github.io/react-badges/]

A Ruby implementation of GraphQL [http://graphql.org/].

	Website [https://rmosolgo.github.io/graphql-ruby]

	API Documentation [http://www.rubydoc.info/gems/graphql]

	Newsletter [https://tinyletter.com/graphql-ruby]

Installation

Install from RubyGems by adding it to your Gemfile, then bundling.

Gemfile
gem 'graphql'

$ bundle install

Getting Started

$ rails generate graphql:install

After this, you may need to run bundle install again, as by default graphiql-rails is added on installation.

Or, see “Getting Started” [https://rmosolgo.github.io/graphql-ruby/].

Upgrade

I also sell GraphQL::Pro [http://graphql.pro] which provides several features on top of the GraphQL runtime, including Pundit authorization [http://rmosolgo.github.io/graphql-ruby/authorization/pundit_integration], CanCan authorization [http://rmosolgo.github.io/graphql-ruby/authorization/can_can_integration], Pusher-based subscriptions [http://graphql-ruby.org/subscriptions/pusher_implementation] and persisted queries [http://rmosolgo.github.io/graphql-ruby/operation_store/overview]. Besides that, Pro customers get email support and an opportunity to support graphql-ruby’s development!

Goals

	Implement the GraphQL spec & support a Relay front end

	Provide idiomatic, plain-Ruby API with similarities to reference implementation where possible

	Support Ruby on Rails and Relay

Getting Involved

	Say hi & ask questions in the #ruby channel on Slack [https://graphql-slack.herokuapp.com/] or on Twitter [https://twitter.com/rmosolgo]!

	Report bugs by posting a description, full stack trace, and all relevant code in a GitHub issue [https://github.com/rmosolgo/graphql-ruby/issues].

	Start hacking with the Development guide [http://graphql-ruby.org/development].

Contributing

Thanks for getting involved! I hope the information below will help you contribute to graphql-ruby.

Issues

When reporting a bug, please include these details when applicable:

	graphql version and other applicable versions (Rails, graphql-batch, etc)

	Definitions of schema or relevant types and fields (in Ruby is best, in GraphQL IDL is ok)

	Example GraphQL query and response (if query execution is involved)

	Full backtrace (if a Ruby exception is involved)

With these details, we can efficiently hunt down the bug!

Code

It’s important for code to fit in with design and maintenance goals of the project. For this reason, consider an issue to discuss new features or large refactors. That way we can work together to find suitable solution!

Legal

By submitting a Pull Request, you disavow any rights or claims to any changes submitted to graphql-ruby and assign the copyright of those changes to Robert Mosolgo, the author and maintainer of graphql-ruby. If you cannot or don’t want to reassign those rights (your employment contract for your employer may not allow this), don’t submit a PR. Instead, open an issue so that someone else can give it a try.

In short, contributing code means that the code belongs to the maintainer. That’s generally what you want, since the burden of upkeep, support and distribution falls on the maintainer anyways. I hope this doesn’t prohibit you from contributing!

layout: guide
doc_stub: false
search: true
title: Development
section: Other
desc: Hacking on GraphQL Ruby

So, you want to hack on GraphQL Ruby! Here are some tips for getting started.

	Setup your development environment

	Run the tests to verify your setup

	Debug with pry

	Run the benchmarks to test performance in your environment

	Coding guidelines for working on your contribution

	Special tools for building the lexer and parser

	Building and publishing the GraphQL Ruby website

	Versioning describes how changes are managed and released

	Releasing Gem versions

Setup

Get your own copy of graphql-ruby by forking rmosolgo/graphql-ruby on GitHub [https://github.com/rmosolgo/graphql-ruby] and cloning your fork.

Then, install the dependencies:

	Install SQLite3 and MongoDB (eg, brew install sqlite && brew install mongodb)

	bundle install

	Optional: Ragel [http://www.colm.net/open-source/ragel/] is required to build the lexer

Running the Tests

Unit tests

You can run the tests with

bundle exec rake # tests & Rubocop
bundle exec rake test # tests only

You can run a specific file with TEST=:

bundle exec rake test TEST=spec/graphql/query_spec.rb
run tests in `query_spec.rb` only

You can focus on a specific example with focus:

focus
it "does something cool" do
 # ...
end

Then, only focused tests will run:

bundle exec rake test
only the focused test will be run

(This is provided by minitest-focus.)

You can watch files with guard:

bundle exec guard

When a file in lib/ is modified, guard will run the corresponding file in spec. Guard also respects # test_via: comments, so it will run that test when the file changes (if there is no corresponding file by name).

Integration tests

You need to pick a specific gemfile from gemfiles/ to run integration tests. For example:

BUNDLE_GEMFILE=gemfiles/rails_5.1.gemfile bundle install
BUNDLE_GEMFILE=gemfiles/rails_5.1.gemfile bundle exec rake test TEST=spec/integration/rails/graphql/relay/array_connection_spec.rb

Other tests

There are system tests for checking ActionCable behavior, use:

bundle exec rake test:system

And JavaScript tests:

bundle exec rake test:js

Gemfiles, Gemfiles, Gemfiles

graphql-ruby has several gemfiles to ensure support for various Rails versions.

You can run all gemfiles with

appraisal rake

You can specify a gemfile with BUNDLE_GEMFILE, eg:

BUNDLE_GEMFILE=gemfiles/rails_5.gemfile bundle exec rake

Debugging with Pry

pry [http://pryrepl.org/] is included with GraphQL-Ruby’s development setup to help with debugging.

To pause execution in Ruby code, add:

binding.pry

Then, the program will pause and your terminal will become a Ruby REPL. Feel free to use pry in your development process!

Running the Benchmarks

This project includes some Rake tasks to record benchmarks:

$ bundle exec rake -T | grep bench:
rake bench:profile # Generate a profile of the introspection query
rake bench:query # Benchmark the introspection query
rake bench:validate # Benchmark validation of several queries

You can save results by sending the output into a file:

$ bundle exec rake bench:validate > before.txt
$ cat before.txt
...
--> benchmark output here

If you want to check performance, create a baseline by running these tasks before your changes. Then, make your changes and run the tasks again and compare your results.

Keep these points in mind when using benchmarks:

	The results are hardware-specific: computers with different hardware will have different results. So don’t compare your results to results from other computers.

	The results are environment-specific: CPU and memory availability are affected by other processes on your computer. So try to create similar environments for your before-and-after testing.

Coding Guidelines

GraphQL-Ruby uses a thorough test suite to make sure things work reliably day-after-day. Please include tests that describe your changes, for example:

	If you contribute a bug fix, include a test for the code that was broken (and is now fixed)

	If you contribute a feature, include tests for all intended uses of that feature

	If you modify existing behavior, update the tests to cover all intended behaviors for that code

Don’t fret about coding style or organization. There’s a minimal Rubocop config in .rubocop.yml which runs during CI. You can run it manually with bundle exec rake rubocop.

Lexer and Parser

The lexer and parser use a multistep build process:

	Write the definition (lexer.rl or parser.y)

	Run the generator (Ragel or Racc) to create .rb files (lexer.rb or parser.rb)

	require those .rb files in GraphQL-Ruby

To update the lexer or parser, you should update their corresponding definitions (lexer.rl or parser.y). Then, you can run bundle exec build_parser to re-generate the .rb files.

You will need Ragel to build the lexer (see above).

If you start guard (bundle exec guard), the .rb files will be rebuilt whenever the definition files are modified.

Website

To update the website, update the .md files in guides/.

To preview your changes, you can serve the website locally:

bundle exec rake site:serve

Then visit http://localhost:4000.

To publish the website with GitHub pages, run the Rake task:

bundle exec rake site:publish

Search Index

GraphQL-Ruby’s search index is powered by Algolia. To update the index, you need the API key in an environment variable:

$ export ALGOLIA_API_KEY=...

Without this key, the search index will fall out-of-sync with the website. Contact @rmosolgo to gain access to this key.

API Docs

The GraphQL-Ruby website has its own rendered version of the gem’s API docs. They’re pushed to GitHub pages with a special process.

First, generate local copies of the docs you want to publish:

$ bundle exec rake apidocs:gen_version[1.8.0] # for example, generate docs that you want to publish

Then, check them out locally:

$ bundle exec rake site:serve
then visit localhost:4000/api-doc/1.8.0/

Then, publish them as part of the whole site:

$ bundle exec rake site:publish

Finally, check your work by visiting the docs on the website.

Versioning

GraphQL-Ruby does not attempt to deliver “semantic versioning” for the reasons described in jashkenas’
s post, “Why Semantic Versioning Isn’t” [https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e]. Instead, the following scheme is used as a guideline:

	Version numbers consist of three parts, MAJOR.MINOR.PATCH

	PATCH version indicates bug fixes or small features for specific use cases. Ideally, you can upgrade patch versions with only a quick skim of the changelog.

	MINOR version indicates significant additions, internal refactors, or small breaking changes. When upgrading a minor version, check the changelog for any new features or breaking changes which apply to your system. The changelog will always include an upgrade path for any breaking changes. Minor versions may also include deprecation warnings to warn about upcoming breaking changes.

	MAJOR version indicates significant breaking changes. Do not expect code to run without some modification, especially if the code yielded deprecation warnings.

This policy is inspired by the Ruby 2.1.0+ version policy [https://www.ruby-lang.org/en/news/2013/12/21/ruby-version-policy-changes-with-2-1-0/].

Pull requests and issues may be tagged with a GitHub milestone [https://github.com/rmosolgo/graphql-ruby/milestones] to denote when they’ll be released.

The changelog [https://github.com/rmosolgo/graphql-ruby/blob/master/CHANGELOG.md] should always contain accurate and thorough information so that users can upgrade. If you have trouble upgrading based on the changelog, please open an issue on GitHub.

Releasing

GraphQL-Ruby doesn’t have a strict release schedule. If you think it should, consider opening an issue to share your thoughts.

To cut a release:

	Update CHANGELOG.md for the new version:

	Add a new heading for the new version, and paste the four categories of changes into the new section

	Open the GitHub milestone corresponding to the new version

	Check each pull request and put it in the category (or categories) that it belongs in

	If a change affects the default behavior of GraphQL-Ruby in a disruptive way, add it to ### Breaking Changes and include migration notes if possible

	Include the PR number beside the change description for future reference

	Update lib/graphql/version.rb with the new version number

	Commit changes to master

	Release to RubyGems with bundle exec rake release

	Update the website:

	Generate new API docs with bundle exec rake apidocs:gen_version[<your.version.number>]

	Push them to the website with bundle exec rake site:publish

	Celebrate 🎊 !

layout: guide
doc_stub: false
search: true
title: FAQ
other: true
desc: How to do common tasks

Returning Route URLs

With GraphQL there is less of a need to include resource URLs to other REST resources, however sometimes you want to use Rails routing to include a URL as one of your fields. A common use case would be to build HTML format URLs to render a link in your React UI. In that case you can add the Rails route helpers to the execution context as shown below.

Example

class Types::UserType < Types::BaseObject
 field :profile_url, String, null: false
 def profile_url
 context[:routes].user_url(object)
 end
end

Add the url helpers to `context`:
MySchema.execute(
 params[:query],
 variables: params[:variables],
 context: {
 routes: Rails.application.routes.url_helpers,
 # ...
 },
)

layout: guide
doc_stub: false
search: true
title: Getting Started
section: Other
desc: Start here!

Installation

You can install graphql from RubyGems by adding to your application’s Gemfile:

Gemfile
gem "graphql"

Then, running bundle install:

$ bundle install

Getting Started

On Rails, you can get started with a few GraphQL generators [https://rmosolgo.github.io/graphql-ruby/schema/generators#graphqlinstall]:

Add graphql-ruby boilerplate and mount graphiql in development
rails g graphql:install
Make your first object type
rails g graphql:object Post title:String rating:Int comments:[Comment]

Or, you can build a GraphQL server by hand:

	Define some types

	Connect them to a schema

	Execute queries with your schema

Declare types

Types describe objects in your application and form the basis for GraphQL’s type system [http://graphql.org/learn/schema/#type-system].

app/graphql/post_type.graphql
class PostType < GraphQL::Schema::Object
 description "A blog post"
 field :id, ID, null: false
 field :title, String, null: false
 # fields should be queried in camel-case (this will be `truncatedPreview`)
 field :truncated_preview, String, null: false
 # Fields can return lists of other objects:
 field :comments, [CommentType], null: true,
 # And fields can have their own descriptions:
 description: "This post's comments, or null if this post has comments disabled."
end

app/graphql/comment_type.graphql
class CommentType < GraphQL::Schema::Object
 field :id, ID, null: false
 field :post, PostType, null: false
end

Build a Schema

Before building a schema, you have to define an entry point to your system, the “query root” [http://graphql.org/learn/schema/#the-query-and-mutation-types]:

class QueryType < GraphQL::Schema::Object
 description "The query root of this schema"

 # First describe the field signature:
 field :post, PostType, null: true do
 description "Find a post by ID"
 argument :id, ID, required: true
 end

 # Then provide an implementation:
 def post(id:)
 Post.find(id)
 end
end

Then, build a schema with QueryType as the query entry point:

class Schema < GraphQL::Schema
 query QueryType
end

This schema is ready to serve GraphQL queries! {% internal_link “Browse the guides”,”/guides” %} to learn about other GraphQL Ruby features.

Execute queries

You can execute queries from a query string:

query_string = "
{
 post(id: 1) {
 id
 title
 truncatedPreview
 }
}"
result_hash = Schema.execute(query_string)
{
"data" => {
"post" => {
"id" => 1,
"title" => "GraphQL is nice"
"truncatedPreview" => "GraphQL is..."
}
}
}

See {% internal_link “Executing Queries”,”/queries/executing_queries” %} for more information about running queries on your schema.

Use with Relay

If you’re building a backend for Relay [http://facebook.github.io/relay/], you’ll need:

	A JSON dump of the schema, which you can get by sending GraphQL::Introspection::INTROSPECTION_QUERY [https://github.com/rmosolgo/graphql-ruby/blob/master/lib/graphql/introspection/introspection_query.rb]

	Relay-specific helpers for GraphQL, see the GraphQL::Relay guides.

Use with Apollo Client

Apollo Client [http://dev.apollodata.com/] is a full featured, simple to use GraphQL client with convenient integrations for popular view layers. You don’t need to do anything special to connect Apollo Client to a graphql-ruby server.

Use with GraphQL.js Client

GraphQL.js Client [https://github.com/f/graphql.js] is a tiny client that is platform- and framework-agnostic. It works well with graphql-ruby servers, since GraphQL requests are simple query strings transport over HTTP.

layout: guide
doc_stub: false
search: true
title: Related Projects
section: Other
desc: Code, blog posts and presentations about GraphQL Ruby

Want to add something? Please open a pull request on GitHub [https://github.com/rmosolgo/graphql-ruby]!

Code

	graphql-ruby + Rails demo (src [https://github.com/rmosolgo/graphql-ruby-demo] / heroku [http://graphql-ruby-demo.herokuapp.com])

	graphql-ruby + Sinatra demo (src [https://github.com/robinjmurphy/ruby-graphql-server-example] / heroku [https://ruby-graphql-server-example.herokuapp.com/])

	graphql-batch [https://github.com/shopify/graphql-batch], a batched query execution strategy

	graphql-cache [https://github.com/stackshareio/graphql-cache], a resolver-level caching solution

	graphql-libgraphqlparser [https://github.com/rmosolgo/graphql-libgraphqlparser-ruby], bindings to libgraphqlparser [https://github.com/graphql/libgraphqlparser], a C-level parser.

	graphql-docs [https://github.com/gjtorikian/graphql-docs], a tool to automatically generate static HTML documentation from your GraphQL implementation

	graphql-metrics [https://github.com/Shopify/graphql-metrics], a plugin to extract fine-grain metrics of GraphQL queries received by your server

	Rails Helpers:

	graphql-activerecord [https://github.com/goco-inc/graphql-activerecord]

	graphql-rails-resolve [https://github.com/colepatrickturner/graphql-rails-resolver]

	graphql-query-resolver [https://github.com/nettofarah/graphql-query-resolver], a graphql-ruby add-on to minimize N+1 queries.

	graphql-rails_logger [https://github.com/jetruby/graphql-rails_logger], a logger which allows you to inspect GraphQL queries in a more readable format.

	apollo_upload_server-ruby [https://github.com/jetruby/apollo_upload_server-ruby], a middleware which allows you to upload files with GraphQL and multipart/form-data using apollo-upload-client [https://github.com/jaydenseric/apollo-upload-client] library on front-end.

	optics-agent-ruby [https://github.com/apollostack/optics-agent-ruby], a graphql-ruby agent for use with the Apollo Optics [http://www.apollodata.com/optics] GraphQL performance tool.

	search_object_graphql [https://github.com/rstankov/SearchObjectGraphQL], a DSL for defining search resolvers for GraphQL.

Blog Posts

	Building a blog in GraphQL and Relay on Rails Introduction [https://medium.com/@gauravtiwari/graphql-and-relay-on-rails-getting-started-955a49d251de], Part 1 [https://medium.com/@gauravtiwari/graphql-and-relay-on-rails-creating-types-and-schema-b3f9b232ccfc], Part 2 [https://medium.com/@gauravtiwari/graphql-and-relay-on-rails-first-relay-powered-react-component-cb3f9ee95eca]

	https://medium.com/@khor/relay-facebook-on-rails-8b4af2057152

	https://blog.jacobwgillespie.com/from-rest-to-graphql-b4e95e94c26b#.4cjtklrwt

	http://mgiroux.me/2015/getting-started-with-rails-graphql-relay/

	http://mgiroux.me/2015/uploading-files-using-relay-with-rails/

	http://mgiroux.me/2016/journey-into-graphql-ruby-query-execution/

Screencasts

	GraphQL Basics in Rails 5 [https://rubyplus.com/episodes/271-GraphQL-Basics-in-Rails-5]

Presentations

	Rescuing Legacy Codebases with GraphQL [https://speakerdeck.com/nettofarah/rescuing-legacy-codebases-with-graphql-1] by @nettofarah [https://twitter.com/nettofarah]

layout: guide
search: true
section: Authorization
title: Accessibility
desc: Reject queries from unauthorized users if they access certain parts of the schema.
index: 2

With GraphQL-Ruby, you can inspect an incoming query, and return a custom error if that query accesses some unauthorized parts of the schema.

This is different from {% internal_link “visibility”, “/authorization/visibility” %}, where unauthorized parts of the schema are treated as non-existent. It’s also different from {% internal_link “authorization”, “/authorization/authorization” %}, which makes checks while running, instead of before running.

Preventing Access

You can override some .accessible?(context) methods to prevent access to certain members of the schema:

	Type and mutation classes have a .accessible?(context) class method

	Arguments and fields have a .accessible?(context) instance method

These methods are called with the query context, based on the hash you pass as context:.

Whenever that method is implemented to return false, the currently-checked field will be collected as inaccessible. For example:

class BaseField < GraphQL::Schema::Field
 def initialize(preview:, **kwargs, &block)
 @preview = preview
 super(**kwargs, &block)
 end

 # If this field was marked as preview, hide it unless the current viewer can see previews.
 def accessible?(context)
 if @preview && !context[:viewer].can_preview?
 false
 else
 super
 end
 end
end

Now, any fields created with field(..., preview: true) will be visible to everyone, but only accessible to users where .can_preview? is true.

Adding an Error

By default, GraphQL-Ruby will return a simple error to the client if any .accessible? checks return false.

You can customize this behavior by overriding {{ “Schema.inaccessible_fields” | api_docs }}, for example:

class MySchema < GraphQL::Schema
 # If you have a custom `permission_level` setting on your `GraphQL::Field` class,
 # you can access it here:
 def self.inaccessible_fields(error)
 required_permissions = error.fields.map(&:permission_level).uniq
 # Return a custom error
 GraphQL::AnalysisError.new("You need certain permissions: #{required_permissions.join(", ")}")
 end
end

Then, your custom error will be added to the response instead of the default one.

layout: guide
search: true
section: Authorization
title: Authorization
desc: During execution, check if the current user has permission to access retrieved objects.
index: 3

While a query is running, you can check each object to see whether the current user is authorized to interact with that object. If the user is not authorized, you can handle the case with an error.

Adding Authorization Checks

Schema members have .authorized?(value, context) methods which will be called during execution:

	Type and mutation classes have .authorized?(value, context) class methods

	Fields and arguments have #authorized?(value, context) instance methods

These methods are called with:

	value: the object from your application which was returned from a field

	context: the query context, based on the hash passed as context:

When you implement this method to return false, the query will be halted, for example:

class Types::Friendship < Types::BaseObject
 # You can only see the details on a `Friendship`
 # if you're one of the people involved in it.
 def self.authorized?(object, context)
 super && (object.to_friend == context[:viewer] || object.from_friend == context[:viewer])
 end
end

(Always call super to get the default checks, too.)

Now, whenever an object of type Friendship is going to be returned to the client, it will first go through the .authorized? method. If that method returns false, the field will get nil instead of the original object, and you may handle that case with an error (see below).

Handling Unauthorized Objects

By default, GraphQL-Ruby silently replaces unauthorized objects with nil, as if they didn’t exist. You can customize this behavior by implementing {{ “Schema.unauthorized_object” | api_doc }} in your schema class, for example:

class MySchema < GraphQL::Schema
 # Override this hook to handle cases when `authorized?` returns false:
 def self.unauthorized_object(error)
 # Increment a metric somewhere:
 AppStats.increment("graphql:unauthorized:#{error.type.graphql_name}:#{error.object.class.name}")
 # Add a top-level error to the response instead of returning nil:
 raise GraphQL::ExecutionError, "An object of type #{error.type.graphql_name} was hidden due to permissions"
 end
end

Now, the custom hook will be called instead of the default one.

If .unauthorized_object returns a non-nil object (and doesn’t raise an error), then that object will be used in place of the unauthorized object.

layout: guide
search: true
section: Authorization
title: CanCan Integration
desc: Hook up GraphQL to CanCan abilities
index: 4
pro: true

GraphQL::Pro [http://graphql.pro] includes an integration for powering GraphQL authorization with CanCan [https://github.com/CanCanCommunity/cancancan].

Why bother? You could put your authorization code in your GraphQL types themselves, but writing a separate authorization layer gives you a few advantages:

	Since the authorization code isn’t embedded in GraphQL, you can use the same logic in non-GraphQL (or legacy) parts of the app.

	The authorization logic can be tested in isolation, so your end-to-end GraphQL tests don’t have to cover as many possibilities.

Getting Started

NOTE: Requires the latest gems, so make sure your Gemfile has:

For CanCanIntegration:
gem "graphql-pro", ">=1.7.11"
For list scoping:
gem "graphql", ">=1.8.7"

Then, bundle install.

Whenever you run queries, include :current_user in the context:

context = {
 current_user: current_user,
 # ...
}
MySchema.execute(..., context: context)

And read on about the different features of the integration:

	Authorizing Objects

	Scoping Lists and Connections

	Authorizing Fields

	Authorizing Arguments

	Authorizing Mutations

	Custom Abilities Class

Authorizing Objects

For each object type, you can assign a required action for Ruby objects of that type. To get started, include the ObjectIntegration in your base object class:

app/graphql/types/base_object.rb
class Types::BaseObject < GraphQL::Schema::Object
 # Add the CanCan integration:
 include GraphQL::Pro::CanCanIntegration::ObjectIntegration
 # By default, require `can :read, ...`
 can_can_action(:read)
 # Or, to require no permissions by default:
 # can_can_action(nil)
end

Now, anyone fetching an object will need can :read, ... for that object.

CanCan configurations are inherited, and can be overridden in subclasses. For example, to allow all viewers to see the Query root type:

class Types::Query < Types::BaseObject
 # Allow anyone to see the query root
 can_can_action nil
end

Bypassing CanCan

can_can_action(nil) will override any inherited configuration and skip CanCan checks for an object, field, argument or mutation.

Handling Unauthorized Objects

When any CanCan check returns false, the unauthorized object is passed to {{ “Schema.unauthorized_object” | api_doc }}, as described in {% internal_link “Handling unauthorized objects”, “/authorization/authorization#handling-unauthorized-objects” %}.

Scopes

The CanCan integration adds CanCan’s .accessible_by [https://github.com/cancancommunity/cancancan/wiki/Fetching-Records] to GraphQL-Ruby’s {% internal_link “list scoping”, “/authorization/scoping” %}

To scope lists of interface or union type, include the integration in your base union class and base interface module:

class BaseUnion < GraphQL::Schema::Union
 include GraphQL::Pro::CanCanIntegration::UnionIntegration
end

module BaseInterface
 include GraphQL::Schema::Interface
 include GraphQL::Pro::CanCanIntegration::InterfaceIntegration
end

Note that .accessible_by is best for database relations, but doesn’t play well with Arrays. See below for bypassing CanCan if you want to return an Array.

Bypassing scopes

To allow an unscoped relation to be returned from a field, disable scoping with scope: false, for example:

Allow anyone to browse the job postings
field :job_postings, [Types::JobPosting], null: false,
 scope: false

Authorizing Fields

You can also require certain checks on a field-by-field basis. First, include the integration in your base field class:

app/graphql/types/base_field.rb
class Types::BaseField < GraphQL::Schema::Field
 # Add the CanCan integration:
 include GraphQL::Pro::CanCanIntegration::FieldIntegration
 # By default, don't require a role at field-level:
 can_can_action nil
end

If you haven’t already done so, you should also hook up your base field class to your base object and base interface:

app/graphql/types/base_object.rb
class Types::BaseObject < GraphQL::Schema::Object
 field_class Types::BaseField
end
app/graphql/types/base_interface.rb
module Types::BaseInterface
 # ...
 field_class Types::BaseField
end

Then, you can add can_can_action: options to your fields:

class Types::JobPosting < Types::BaseObject
 # Only allow `can :review_applications, JobPosting` users
 # to see who has applied
 field :applicants, [Types::User], null: true,
 can_can_action: :review_applicants
end

It will require the named action (:review_applicants) for the object being viewed (a JobPosting).

Authorizing Arguments

Similar to field-level checks, you can require certain permissions to use certain arguments. To do this, add the integration to your base argument class:

class Types::BaseArgument < GraphQL::Schema::Argument
 # Include the integration and default to no permissions required
 include GraphQL::Pro::CanCanIntegration::ArgumentIntegration
 can_can_action nil
end

Then, make sure your base argument is hooked up to your base field and base input object:

class Types::BaseField < GraphQL::Schema::Field
 argument_class Types::BaseArgument
 # PS: see "Authorizing Fields" to make sure your base field is hooked up to objects, interfaces and mutations
end

class Types::BaseInputObject < GraphQL::Schema::InputObject
 argument_class Types::BaseArgument
end

Now, arguments accept a can_can_action: option, for example:

class Types::Company < Types::BaseObject
 field :employees, Types::Employee.connection_type, null: true do
 # Only admins can filter employees by email:
 argument :email, String, required: false, can_can_action: :admin
 end
end

This will check for can :admin, Company (or a similar rule for the company being queried) for the current user.

Authorizing Mutations

There are a few ways to authorize GraphQL mutations with the CanCan integration:

	Add a mutation-level roles

	Run checks on objects loaded by ID

Also, you can configure unauthorized object handling

Setup

Add MutationIntegration to your base mutation, for example:

class Mutations::BaseMutation < GraphQL::Schema::Mutation
 include GraphQL::Pro::CanCanIntegration::MutationIntegration

 # Also, to use argument-level authorization:
 argument_class Types::BaseArgument
end

Also, you’ll probably want a BaseMutationPayload where you can set a default role:

class Types::BaseMutationPayload < Types::BaseObject
 # If `BaseObject` requires some permissions, override that for mutation results.
 # Assume that anyone who can run a mutation can read their generated result types.
 can_can_action nil
end

And hook it up to your base mutation:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
 object_class Types::BaseMutationPayload
end

Mutation-level roles

Each mutation can have a class-level can_can_action which will be checked before loading objects or resolving, for example:

class Mutations::PromoteEmployee < Mutations::BaseMutation
 can_can_action :run_mutation
end

In the example above, can :run_mutation, Mutations::PromoteEmployee will be checked before running the mutation. (The currently-running instance of Mutations::PromoteEmployee is passed to the ability checker.)

Authorizing Loaded Objects

Mutations can automatically load and authorize objects by ID using the loads: option.

Beyond the normal object reading permissions, you can add an additional role for the specific mutation input using a can_can_action: option:

class Mutations::FireEmployee < Mutations::BaseMutation
 argument :employee_id, ID, required: true,
 loads: Types::Employee,
 can_can_action: :supervise,
end

In the case above, the mutation will halt unless the can :supervise, ... check returns true. (The fetched instance of Employee is passed to the ability checker.)

Unauthorized Mutations

By default, an authorization failure in a mutation will raise a Ruby exception. You can customize this by implementing #unauthorized_by_can_can(owner, value) in your base mutation, for example:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
 def unauthorized_by_can_can(owner, value)
 # No error, just return nil:
 nil
 end
end

The method is called with:

	owner: the GraphQL::Schema::Argument instance or mutation class whose role was not satisfied

	value: the object which didn’t pass for context[:current_user]

Since it’s a mutation method, you can also access context in that method.

Whatever that method returns will be treated as an early return value for the mutation, so for example, you could return {% internal_link “errors as data”, “/mutations/mutation_errors” %}:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
 field :errors, [String], null: true

 def unauthorized_by_can_can(owner, value)
 # Return errors as data:
 { errors: ["Missing required permission: #{owner.can_can_action}, can't access #{value.inspect}"] }
 end
end

Custom Abilities Class

By default, the integration will look for a top-level ::Ability class.

If you’re using a different class, provide an instance ahead-of-time as context[:can_can_ability]

For example, you could always add one in your schema’s #execute method:

class MySchema < GraphQL::Schema
 # Override `execute` to provide a custom Abilities instance for the CanCan integration
 def self.execute(*args, context: {}, **kwargs)
 # Assign `context[:can_can_ability]` to an instance of our custom class
 context[:can_can_ability] = MyAuthorization::CustomAbilitiesClass.new(context[:current_user])
 super
 end
end

layout: guide
search: true
section: Authorization
title: Overview
desc: Overview of GraphQL authorization in general and an intro to the built-in framework.
index: 0

Here’s a conceptual approach to GraphQL authorization, followed by an introduction to the built-in authorization framework. Each part of the framework is described in detail in its own guide.

Authorization: GraphQL vs REST

In a REST API, the common authorization pattern is fairly simple. Before performing the requested action, the server asserts that the current client has the required permissions for that action. For example:

class PostsController < ApiController
 def create
 # First, check the client's permission level:
 if current_user.can?(:create_posts)
 # If the user is permitted, then perform the action:
 post = Post.create(params)
 render json: post
 else
 # Otherwise, return an error:
 render nothing: true, status: 403
 end
 end
end

However, this request-by-request mindset doesn’t map well to GraphQL because there’s only one controller and the requests that come to it may be very different. To illustrate the problem:

class GraphqlController < ApplicationController
 def execute
 # What permission is required for `query_str`?
 # It depends on the string! So, you can't generalize at this level.
 if current_user.can?(:"???")
 MySchema.execute(query_str, context: ctx, variables: variables)
 end
 end
end

So, what new mindset will work with a GraphQL API?

For mutations, remember that each mutation is like an API request in itself. For example, Posts#create above would map to the createPost(...) mutation in GraphQL. So, each mutation should be authorized in its own right.

For queries, you can think of each individual object like a GET request to a REST API. So, each object should be authorized for reading in its own right.

By applying this mindset, each part of the GraphQL query will be properly authorized before it is executed. Also, since the different units of code are each authorized on their own, you can be sure that each incoming query will be properly authorized, even if it’s a brand new query that the server has never seen before.

What About Authentication?

As a reminder:

	Authentication is the process of determining what user is making the current request, for example, accepting a username and password, or finding a User in the database from session[:current_user_id].

	Authorization is the process of verifying that the current user has permission to do something (or see something), for example, checking admin? status or looking up permission groups from the database.

In general, authentication is not addressed in GraphQL at all. Instead, your controller should get the current user based on the HTTP request (eg, an HTTP header or a cookie) and provide that information to the GraphQL query. For example:

class GraphqlController < ApplicationController
 def execute
 # Somehow get the the current `User` from this HTTP request.
 current_user = get_logged_in_user(request)
 # Provide the current user in `context` for use during the query
 context = { current_user: current_user }
 MySchema.execute(query_str, context: context, ...)
 end
end

After your HTTP handler has loaded the current user, you can access it via context[:current_user] in your GraphQL code.

Authorization in Your Business Logic

Before introducing GraphQL-specific authorization, consider the advantages of application-level authorization. (See the GraphQL.org post [https://graphql.org/learn/authorization/] on the same topic.) For example, here’s authorization mixed into the GraphQL API layer:

field :posts, [Types::Post], null: false

def posts
 # Perform an auth check in the GraphQL field code:
 if context[:current_user].admin?
 Post.all
 else
 Post.published
 end
end

The downside of this is that, when Types::Post is queried in other contexts, the same authorization check may not be applied. Additionally, since the authorization code is coupled with the GraphQL API, the only way to test it is via GraphQL queries, which adds some complexity to tests.

Alternatively, you could move the authorization to your business logic, the Post class:

class Post < ActiveRecord::Base
 # Return the list of posts which `user` may see
 def self.posts_for(user)
 if user.admin?
 self.all
 else
 self.published
 end
 end
end

Then, use this application method in your GraphQL code:

field :posts, [Types::Post], null: false

def posts
 # Fetch the posts this user can see:
 Post.posts_for(context[:current_user])
end

In this case, Post.posts_for(user) could be tested independently from GraphQL. Then, you have less to worry about in your GraphQL tests. As a bonus, you can use Post.posts_for(user) in other parts of the app, too, such as the web UI or REST API.

GraphQL-Ruby’s Authorization Framework

Despite the advantages of authorization at the application layer, as described above, there might be some reasons to authorize in the API layer:

	Have an extra assurance that your API layer is secure

	Authorize the API request before running it (see “visibility” below)

	Integrate with code that doesn’t have authorization built-in

To accomplish these, you can use GraphQL-Ruby’s authorization framework. The framework has three levels, each of which is described in its own guide:

	{% internal_link “Visibility”, “/authorization/visibility” %} hides parts of the GraphQL schema from users who don’t have full permission.

	{% internal_link “Accessibility”, “/authorization/accessibility” %} prevents running queries which access parts of the GraphQL schema, unless users have the required permission.

	{% internal_link “Authorization”, “/authorization/authorization” %} checks application objects during execution to be sure the user has permission to access them.

Also, GraphQL::Pro [http://graphql.pro] has integrations for {% internal_link “CanCan”, “/authorization/can_can_integration” %} and {% internal_link “Pundit”, “/authorization/pundit_integration” %}.

layout: guide
search: true
section: Authorization
title: Pundit Integration
desc: Hook up GraphQL to Pundit policies
index: 4
pro: true

GraphQL::Pro [http://graphql.pro] includes an integration for powering GraphQL authorization with Pundit [https://github.com/varvet/pundit] policies.

Why bother? You could put your authorization code in your GraphQL types themselves, but writing a separate authorization layer gives you a few advantages:

	Since the authorization code isn’t embedded in GraphQL, you can use the same logic in non-GraphQL (or legacy) parts of the app.

	The authorization logic can be tested in isolation, so your end-to-end GraphQL tests don’t have to cover as many possibilities.

Getting Started

NOTE: Requires the latest gems, so make sure your Gemfile has:

For PunditIntegration:
gem "graphql-pro", ">=1.7.9"
For list scoping:
gem "graphql", ">=1.8.7"

Then, bundle install.

Whenever you run queries, include :current_user in the context:

context = {
 current_user: current_user,
 # ...
}
MySchema.execute(..., context: context)

And read on about the different features of the integration:

	Authorizing Objects

	Scoping Lists and Connections

	Authorizing Fields

	Authorizing Arguments

	Authorizing Mutations

Authorizing Objects

You can specify Pundit roles that must be satisfied in order for viewers to see objects of a certain type. To get started, include the ObjectIntegration in your base object class:

app/graphql/types/base_object.rb
class Types::BaseObject < GraphQL::Schema::Object
 # Add the Pundit integration:
 include GraphQL::Pro::PunditIntegration::ObjectIntegration
 # By default, require staff:
 pundit_role :staff
 # Or, to require no permissions by default:
 # pundit_role nil
end

Now, anyone trying to read a GraphQL object will have to pass the #staff? check on that object’s policy.

Then, each child class can override that parent configuration. For example, allow all viewers to read the Query root:

class Types::Query < Types::BaseObject
 # Allow anyone to see the query root
 pundit_role nil
end

Policies and Methods

For each object returned by GraphQL, the integration matches it to a policy and method.

The policy is found using Pundit.policy! [https://www.rubydoc.info/gems/pundit/Pundit%2Epolicy!], which looks up a policy using the object’s class name.

Then, GraphQL will call a method on the policy to see whether the object is permitted or not. This method is assigned in the object class, for example:

class Types::Employee < Types::BaseObject
 # Only show employee objects to their bosses,
 # or when that employee is the current viewer
 pundit_role :employer_or_self
 # ...
end

That configuration will call #employer_or_self? on the corresponding Pundit policy.

Bypassing Policies

The integration requires that every object with a pundit_role has a corresponding policy class. To allow objects to skip authorization, you can pass nil as the role:

class Types::PublicProfile < Types::BaseObject
 # Anyone can see this
 pundit_role nil
end

Handling Unauthorized Objects

When any Policy method returns false, the unauthorized object is passed to {{ “Schema.unauthorized_object” | api_doc }}, as described in {% internal_link “Handling unauthorized objects”, “/authorization/authorization#handling-unauthorized-objects” %}.

Scopes

The Pundit integration adds Pundit scopes [https://github.com/varvet/pundit#scopes] to GraphQL-Ruby’s {% internal_link “list scoping”, “/authorization/scoping” %} feature. Any list or connection will be scoped. If a scope is missing, the query will crash rather than risk leaking unfiltered data.

To scope lists of interface or union type, include the integration in your base union class and base interface module:

class BaseUnion < GraphQL::Schema::Union
 include GraphQL::Pro::PunditIntegration::UnionIntegration
end

module BaseInterface
 include GraphQL::Schema::Interface
 include GraphQL::Pro::PunditIntegration::InterfaceIntegration
end

Note that Pundit scopes are best for database relations, but don’t play well with Arrays. See below for bypassing Pundit if you want to return an Array.

Bypassing scopes

To allow an unscoped relation to be returned from a field, disable scoping with scope: false, for example:

Allow anyone to browse the job postings
field :job_postings, [Types::JobPosting], null: false,
 scope: false

Authorizing Fields

You can also require certain checks on a field-by-field basis. First, include the integration in your base field class:

app/graphql/types/base_field.rb
class Types::BaseField < GraphQL::Schema::Field
 # Add the Pundit integration:
 include GraphQL::Pro::PunditIntegration::FieldIntegration
 # By default, don't require a role at field-level:
 pundit_role nil
end

If you haven’t already done so, you should also hook up your base field class to your base object and base interface:

app/graphql/types/base_object.rb
class Types::BaseObject < GraphQL::Schema::Object
 field_class Types::BaseField
end
app/graphql/types/base_interface.rb
module Types::BaseInterface
 # ...
 field_class Types::BaseField
end

Then, you can add pundit_role: options to your fields:

class Types::JobPosting < Types::BaseObject
 # Allow signed-in users to browse listings
 pundit_role :signed_in

 # But, only allow `JobPostingPolicy#staff?` users to see
 # who has applied
 field :applicants, [Types::User], null: true,
 pundit_role: :staff
end

It will call the named role (eg, #staff?) on the parent object’s policy (eg JobPostingPolicy).

Authorizing Arguments

Similar to field-level checks, you can require certain permissions to use certain arguments. To do this, add the integration to your base argument class:

class Types::BaseArgument < GraphQL::Schema::Argument
 # Include the integration and default to no permissions required
 include GraphQL::Pro::PunditIntegration::ArgumentIntegration
 pundit_role nil
end

Then, make sure your base argument is hooked up to your base field and base input object:

class Types::BaseField < GraphQL::Schema::Field
 argument_class Types::BaseArgument
 # PS: see "Authorizing Fields" to make sure your base field is hooked up to objects, interfaces and mutations
end

class Types::BaseInputObject < GraphQL::Schema::InputObject
 argument_class Types::BaseArgument
end

Now, arguments accept a pundit_role: option, for example:

class Types::Company < Types::BaseObject
 field :employees, Types::Employee.connection_type, null: true do
 # Only admins can filter employees by email:
 argument :email, String, required: false, pundit_role: :admin
 end
end

The role will be called on the parent object’s policy, for example CompanyPolicy#admin? in the case above.

Authorizing Mutations

There are a few ways to authorize GraphQL mutations with the Pundit integration:

	Add a mutation-level roles

	Run checks on objects loaded by ID

Also, you can configure unauthorized object handling

Setup

Add MutationIntegration to your base mutation, for example:

class Mutations::BaseMutation < GraphQL::Schema::Mutation
 include GraphQL::Pro::PunditIntegration::MutationIntegration

 # Also, to use argument-level authorization:
 argument_class Types::BaseArgument
end

Also, you’ll probably want a BaseMutationPayload where you can set a default role:

class Types::BaseMutationPayload < Types::BaseObject
 # If `BaseObject` requires some permissions, override that for mutation results.
 # Assume that anyone who can run a mutation can read their generated result types.
 pundit_role nil
end

And hook it up to your base mutation:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
 object_class Types::BaseMutationPayload
end

Mutation-level roles

Each mutation can have a class-level pundit_role which will be checked before loading objects or resolving, for example:

class Mutations::PromoteEmployee < Mutations::BaseMutation
 pundit_role :admin
end

In the example above, PromoteEmployeePolicy#admin? will be checked before running the mutation.

Custom Policy Class

By default, Pundit uses the mutation’s class name to look up a policy. You can override this by defining self.policy_class on your mutation:

class Mutations::PromoteEmployee < Mutations::BaseMutation
 def self.policy_class
 ::UserPolicy
 end

 pundit_role :admin
end

Now, the mutation will check UserPolicy#admin? before running.

Another good approach is to have one policy per mutation. You can implement self.policy_class to look up a class within the mutation, for example:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
 def self.policy_class
 # Look up a nested `Policy` constant:
 self.const_get(:Policy)
 end
end

Then, each mutation can define its policy inline, for example:

class Mutations::PromoteEmployee < Mutations::BaseMutation
 # This will be found by `BaseMutation.policy_class`, defined above:
 class Policy
 # ...
 end

 pundit_role :admin
end

Now, Mutations::PromoteEmployee::Policy#admin will be checked before running the mutation.

Authorizing Loaded Objects

Mutations can automatically load and authorize objects by ID using the loads: option.

Beyond the normal object reading permissions, you can add an additional role for the specific mutation input using a pundit_role: option:

class Mutations::FireEmployee < Mutations::BaseMutation
 argument :employee_id, ID, required: true,
 loads: Types::Employee,
 pundit_role: :supervisor,
end

In the case above, the mutation will halt unless the EmployeePolicy#supervisor? method returns true.

Unauthorized Mutations

By default, an authorization failure in a mutation will raise a Ruby exception. You can customize this by implementing #unauthorized_by_pundit(owner, value) in your base mutation, for example:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
 def unauthorized_by_pundit(owner, value)
 # No error, just return nil:
 nil
 end
end

The method is called with:

	owner: the GraphQL::Schema::Argument or mutation class whose role was not satisfied

	value: the object which didn’t pass for context[:current_user]

Since it’s a mutation method, you can also access context in that method.

Whatever that method returns will be treated as an early return value for the mutation, so for example, you could return {% internal_link “errors as data”, “/mutations/mutation_errors” %}:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
 field :errors, [String], null: true

 def unauthorized_by_pundit(owner, value)
 # Return errors as data:
 { errors: ["Missing required permission: #{owner.pundit_role}, can't access #{value.inspect}"] }
 end
end

layout: guide
search: true
section: Authorization
title: Scoping
desc: Filter lists to match the current viewer and context
index: 4

Scoping is a complementary consideration to authorization. Rather than checking “can this user see this thing?”, scoping takes a list of items filters it to the subset which is appropriate for the current viewer and context. The resulting subset is authorized as normal, and, assuming that it was properly scoped, each item should pass authorization checks.

For similar features, see Pundit scopes [https://github.com/varvet/pundit#scopes] and Cancan’s .accessible_by [https://github.com/cancancommunity/cancancan/wiki/Fetching-Records].

scope: option

Fields accept a scope: option to enable (or disable) scoping, for example:

field :products, [Types::Product], scope: true
Or
field :all_products, [Types::Product], scope: false

For list and connection fields, scope: true is the default. For all other fields, scope: false is the default. You can override this by using the scope: option.

.scope_items(items, ctx) method

Type classes may implement .scope_items(items, ctx). This method is called when a field has scope: true. For example,

field :products, [Types::Product] # has `scope: true` by default

Will call:

class Types::Product < Types::BaseObject
 def self.scope_items(items, context)
 # filter items here
 end
end

The method should return a new list with only the appropriate items for the current context.

layout: guide
search: true
section: Authorization
title: Visibility
desc: Programatically hide parts of the GraphQL schema from some users.
index: 1

With GraphQL-Ruby, it’s possible to hide parts of your schema from some users. This isn’t exactly part of the GraphQL spec, but it’s roughly within the bounds of the spec.

Here are some reasons you might want to hide parts of your schema:

	You don’t want non-admin users to know about administration functions of the schema.

	You’re developing a new feature and want to make a gradual release to only a few users first.

Hiding Parts of the Schema

You can customize the visibility of parts of your schema by reimplementing various visible? methods:

	Type classes have a .visible?(context) class method

	Fields and arguments have a #visible?(context) instance method

	Enum values have #visible?(context) instance method

	Mutation classes have a .visible?(context) class method

These methods are called with the query context, based on the hash you pass as context:. If the method returns false, then that member of the schema will be treated as though it doesn’t exist for the entirety of the query. That is:

	In introspection, the member will not be included in the result

	In normal queries, if a query references that member, it will return a validation error, since that member doesn’t exist

For Example

Let’s say you’re working on a new feature which should remain secret for a while. You can implement .visible? in a type:

class Types::SecretFeature < Types::BaseObject
 def self.visible?(context)
 # only show it to users with the secret_feature enabled
 super && context[:viewer].feature_enabled?(:secret_feature)
 end
end

(Always call super to inherit the default behavior.)

Now, the following bits of GraphQL will return validation errors:

	Fields that return SecretFeature, eg query { findSecretFeature { ... } }

	Fragments on SecretFeature, eg Fragment SF on SecretFeature

And in introspection:

	__schema { types { ... } } will not include SecretFeature

	__type(name: "SecretFeature") will return nil

	Any interfaces or unions which normally include SecretFeature will not include it

	Any fields that return SecretFeature will be excluded from introspection

layout: guide
doc_stub: false
search: true
section: Errors
title: Top-level “errors”
desc: The top-level “errors” array and how to use it.
index: 1

The GraphQL specification allows for a top-level "errors" key [http://facebook.github.io/graphql/October2016/#sec-Errors] in the response which may contain information about what went wrong during execution. For example:

{
 "errors" => [...]
}

The response may include both "data" and "errors" in the case of a partial success:

{
 "data" => { ... } # parts of the query that ran successfully
 "errors" => [...] # errors that prevented some parts of the query from running
}

When to Use Top-Level Errors

In general, top-level errors should only be used for exceptional circumstances when a developer should be made aware that the system had some kind of problem.

For example, the GraphQL specification says that when a non-null field returns nil, an error should be added to the "errors" key. This kind of error is not recoverable by the client. Instead, something on the server should be fixed to handle this case.

When you want to notify a client some kind of recoverable issue, consider making error messages part of the schema, for example, as in {% internal_link “mutation errors”, “/mutations/mutation_errors” %}.

Adding Errors to the Array

In GraphQL-Ruby, you can add entries to this array by raising GraphQL::ExecutionError (or a subclass of it), for example:

raise GraphQL::ExecutionError, "Can't continue with this query"

When this error is raised, its message will be added to the "errors" key and GraphQL-Ruby will automatically add the line, column and path to it. So, the above error might be:

{
 "errors" => [
 {
 "message" => "Can't continue with this query",
 "locations" => [
 {
 "line" => 2,
 "column" => 10,
 }
],
 "path" => ["user", "login"],
 }
]
}

Customizing Error JSON

The default error JSON includes "message", "locations" and "path". The forthcoming version [http://facebook.github.io/graphql/draft/#example-fce18] of the GraphQL spec recommends putting custom data in the "extensions" key of the error JSON.

You can customize this in two ways:

	Pass extensions: when raising an error, for example:

raise GraphQL::ExecutionError.new("Something went wrong", extensions: { "code" => "BROKEN" })

In this case, "extensions" => { "code" => "BROKEN" } will be added to the error JSON.

	Override #to_h in a subclass of GraphQL::ExecutionError, for example:

class ServiceUnavailableError < GraphQL::ExecutionError
 def to_h
 super.merge({ "extensions" => {"code" => "SERVICE_UNAVAILABLE"} })
 end
end

Now, "extensions" => { "code" => "SERVICE_UNAVAILABLE" } will be added to the error JSON.

layout: guide
doc_stub: false
search: true
section: Errors
title: Errors in GraphQL
desc: A conceptual introduction to errors in GraphQL
index: 0
redirect_from:

	/schema/type_errors/

	/queries/error_handling/

There are a lot of different kinds of errors in GraphQL! In this guide, we’ll discuss some of the main categories and learn when they apply.

Validation Errors

Because GraphQL is strongly typed, it performs validation of all queries before executing them. If an incoming query is invalid, it isn’t executed. Instead, a response is sent back with "errors":

{
 "errors" => [...]
}

Each error has a message, line, column and path.

The validation rules are part of the GraphQL specification and built into GraphQL-Ruby, so there’s not really a way to customize this behavior, except to pass validate: false when executing a query, which skips validation altogether.

Analysis Errors

GraphQL-Ruby supports pre-execution analysis, which may return "errors" instead of running a query. You can find details in the {% internal_link “Analysis guide”, “/queries/analysis” %}.

GraphQL Invariants

While GraphQL-Ruby is executing a query, some constraints must be satisfied. For example:

	Non-null fields may not return nil.

	Interface and union types must resolve objects to types that belong to that interface/union.

These constraints are part of the GraphQL specification, and when they are violated, it must be addressed somehow. Read more in {% internal_link “Type Errors”, “/errors/type_errors” %}.

Top-level "errors"

The GraphQL specification provides for a top-level "errors" key which may include information about errors during query execution. "errors" and "data" may both be present in the case of a partial success.

In your own schema, you can add to the "errors" key by raising GraphQL::ExecutionError (or subclasses of it) in your code. Read more in the {% internal_link “Execution Errors guide”, “/errors/execution_errors” %}.

Unhandled Errors (Crashes)

When a raised error is not rescued, the GraphQL query crashes entirely and the surrounding code (like a Rails controller) must handle the exception.

For example, Rails will probably return a generic 500 page.

Errors as Data

When you want end users (human beings) to read error messages, you can express errors in the schema, using normal GraphQL fields and types. In this approach, errors are strongly-typed data, queryable in the schema, like any other application data.

For more about this approach, see {% internal_link “Mutation Errors”, “/mutations/mutation_errors” %}

layout: guide
doc_stub: false
search: true
section: Errors
title: Type Errors
desc: Handling type errors
index: 3

The GraphQL specification requires certain assumptions to hold true when executing a query. However, it’s possible that some code would violate that assumption, resulting in a type error.

Here are two type errors that you can customize in GraphQL-Ruby:

	A field with null: false returned nil

	A field returned a value as a union or interface, but that value couldn’t be resolved to a member of that union or interface.

You can specify behavior in these cases by defining a {{ “Schema.type_error” | api_doc }} hook:

class MySchema < GraphQL::Schema
 def self.type_error(err, query_ctx)
 # Handle a failed runtime type coercion
 end
end

It is called with an instance of {{ “GraphQL::UnresolvedTypeError” | api_doc }} or {{ “GraphQL::InvalidNullError” | api_doc }} and the query context (a {{ “GraphQL::Query::Context” | api_doc }}).

If you don’t specify a hook, you get the default behavior:

	Unexpected nils add an error the response’s "errors" key

	Unresolved Union / Interface types raise {{ “GraphQL::UnresolvedTypeError” | api_doc }}

An object that fails type resolution is treated as nil.

layout: guide
doc_stub: false
search: true
section: Fields
title: Arguments
desc: Fields may take arguments as inputs
index: 2

Fields can take arguments as input. These can be used to determine the return value (eg, filtering search results) or to modify the application state (eg, updating the database in MutationType).

Arguments are defined with the argument helper:

field :search_posts, types[PostType] do
 argument :category, types.String
 resolve ->(obj, args, ctx) {
 args[:category]
 # => maybe a string, eg "Programming"
 if args[:category]
 Post.where(category: category).limit(10)
 else
 Post.all.limit(10)
 end
 }
end

Use ! to mark an argument as required:

This argument is a required string:
argument :category, !types.String

Use default_value: value to provide a default value for the argument if not supplied in the query.

argument :category, types.String, default_value: "Programming"

Use as: :alternateName to use a different key from within your resolvers while
exposing another key to clients.

field :post, PostType do
 argument :postId, types.Id, as: :id
 resolve ->(obj, args, ctx) {
 Post.find(args['id'])
 }
end

Provide a prepare function to modify or validate the value of an argument before the field’s resolve function is executed:

field :posts, types[PostType] do
 argument :startDate, types.String, prepare: ->(startDate, ctx) {
 # return the prepared argument or GraphQL::ExecutionError.new("msg")
 # to halt the execution of the field and add "msg" to the `errors` key.
 }
 resolve ->(obj, args, ctx) {
 # use prepared args['startDate']
 }
end

Only certain types are valid for arguments:

	{{ “GraphQL::ScalarType” | api_doc }}, including built-in scalars (string, int, float, boolean, ID)

	{{ “GraphQL::EnumType” | api_doc }}

	{{ “GraphQL::InputObjectType” | api_doc }}, which allows key-value pairs as input

	{{ “GraphQL::ListType” | api_doc }}s of a valid input type

	{{ “GraphQL::NonNullType” | api_doc }}s of a valid input type

The args parameter of a resolve function will always be a {{ “GraphQL::Query::Arguments” | api_doc }}. You can access specific arguments with ["arg_name"] or [:arg_name]. You recursively turn it into a Ruby Hash with to_h. Inside args, scalars will be parsed into Ruby values and enums will be converted to their value: (if one was provided).

resolve ->(obj, args, ctx) {
 args["category"] == args[:category]
 # => true
 args.to_h
 # => { "category" => "Programming" }
 # ...
}

layout: guide
doc_stub: false
search: true
section: Fields
title: Instrumentation
desc: Wrap and modify resolution behavior at schema build-time
index: 3

Field instrumentation can be attached during schema definition:

MySchema = GraphQL::Schema.define do
 instrument(:field, FieldTimerInstrumentation.new)
end

The instrumenter is an object which responds to #instrument(type, field). #instrument should return a GraphQL::Field instance which will be used during query execution. #instrument is called with each type-field pair for all Object types and Interface types in your schema.

Here’s an example field instrumenter:

class FieldTimerInstrumentation
 # If a field was flagged to be timed,
 # wrap its resolve proc with a timer.
 def instrument(type, field)
 if field.metadata[:timed]
 old_resolve_proc = field.resolve_proc
 new_resolve_proc = ->(obj, args, ctx) {
 Rails.logger.info("#{type.name}.#{field.name} START: #{Time.now.to_i}")
 resolved = old_resolve_proc.call(obj, args, ctx)
 Rails.logger.info("#{type.name}.#{field.name} END: #{Time.now.to_i}")
 resolved
 }

 # Return a copy of `field`, with a new resolve proc
 field.redefine do
 resolve(new_resolve_proc)
 end
 else
 field
 end
 end
end

It can be attached as shown above. You can use redefine { ... } to make a shallow copy of the {{ “GraphQL::Field” | api_doc }} and extend its definition.

{{ “GraphQL::Field#lazy_resolve_proc” | api_doc }} can also be instrumented. This is called for objects registered with {% internal_link “lazy execution”,”/schema/lazy_execution” %}.

layout: guide
doc_stub: false
search: true
section: Fields
title: Introduction
desc: Implement fields and resolvers with the Ruby DSL
index: 0

{{ “GraphQL::ObjectType” | api_doc }}s and {{ “GraphQL::InterfaceType” | api_doc }}s may expose their values with fields. A field definition looks like this:

PostType = GraphQL::ObjectType.define do
 # ...
 # name , type , description (optional)
 field :title, types.String, "The title of the Post"
end

By default, fields are resolved by sending the name to the underlying object (eg post.title in the example above).

You can use the hash_key option instead to force a hash lookup instead of the default behaviour:

field :title, types.String, hash_key: :title
resolved with `post[:title]` instead of `post.title`

You can define a different resolution by providing a resolve function:

PostType = GraphQL::ObjectType.define do
 # ...
 # name , type , description (optional)
 field :teaser, types.String, "The teaser of the Post" do
 # how to get the value?
 resolve ->(obj, args, ctx) {
 # first 40 chars of the body
 obj.body[0, 40]
 }
 end
end

The resolve function receives inputs:

	object: The underlying object for this type (above, a Post instance)

	arguments: The arguments for this field (see below, a {{ “GraphQL::Query::Arguments” | api_doc }} instance)

	context: The context for this query (see {% internal_link “Executing Queries”,”/queries/executing_queries” %}, a {{ “GraphQL::Query::Context” | api_doc }} instance)

In fact, the field do ... end block is passed to {{ “GraphQL::Field” | api_doc }}’s .define method, so you can define many things there:

field do
 name "teaser"
 type types.String
 description "..."
 resolve ->(obj, args, ctx) { ... }
 deprecation_reason "Too long, use .title instead"
 complexity 2
end

layout: guide
doc_stub: false
search: true
section: Fields
title: Limits
desc: Always limit lists of items
index: 4

List Fields

Always limit the number of items which can be returned from a list field. For example, use a limit: argument and make sure it’s not too big. The prepare: function provides a convenient place to cap the number of items:

field :items, Types::ItemType do
 # Cap the number of items at 30
 argument :limit, Integer, default_value: 20, prepare: ->(limit, ctx) {[limit, 30].min}
end

def items(limit:)
 object.items.limit(limit)
end

This way, you won’t hit your database for 1000 items!

Relay Connections

Relay connections accept a {% internal_link “max_page_size option”,”/relay/connections.html#maximum-page-size” %} which limits the number of nodes.

layout: guide
doc_stub: false
search: true
section: Fields
title: Wrapping Resolve Functions
desc: Modify execution by wrapping each field’s resolve function
index: 5

You can modify field resolution by applying wrappers to the resolve functions. Wrappers can also be applied by {% internal_link “field instrumentation”,”/fields/instrumentation.html” %}.

For example, you can apply runtime authorization checks. Let’s say you’re exposing documents in your API:

field :documents, types[DocumentType] do
 resolve ->(obj, args, ctx) {
 documents = obj.documents
 # sort, filter, etc
 # return the documents:
 documents
 }
end

You can “wrap” this resolve function to assert that the documents are ok for the current user:

Take a resolve function and call it.
Then, check that the result includes permitted records _only_.
@return [Proc] a new resolve function that checks the return values
def assert_allowed_documents(resolve_func)
 ->(obj, args, ctx) {
 documents = resolve_func.call(obj, args, ctx)
 current_user = ctx[:current_user]

 if documents.all? { |d| current_user.can_view?(d) }
 documents
 else
 nil
 end
 }
end

...

field :documents, types[DocumentType] do
 # wrap the resolve function with your assertion
 resolve assert_allowed_documents(->(obj, args, ctx) {
 # ...
 })
end

This way, you can “catch” the returned value before giving it to a client.

This approach can be further parameterized by implementing it as a class, for example:

Assert that the current user has `permission` on the return value of `block`
class PermissionAssertion
 # Get a permission level and the "inner" resolve function
 def initialize(permission, resolve_func)
 @permission = permission
 @resolve_func = resolve_func
 end

 # GraphQL will call this, so delegate to the "inner" resolve function
 # and check the return value
 def call(obj, args, ctx)
 value = @resolve_func.call(obj, args, ctx)
 current_user = ctx[:current_user]
 if current_user.can?(@permission, value)
 value
 else
 nil
 end
 end
end

...

Apply this class to the resolve function:
field :documents, types[DocumentType] do
 resolve PermissionAssertion.new(:view, ->(obj, args, ctx) {
 # ...
 })
end

layout: guide
doc_stub: false
search: true
section: JavaScript Client
title: Apollo Subscriptions
desc: GraphQL subscriptions with GraphQL-Ruby and Apollo Client
index: 2

GraphQL-Ruby’s JavaScript client includes four kinds of support for Apollo Client:

	Apollo 2.x:

	Overview

	Pusher

	ActionCable

	Apollo 1.x:

	Overview

	Pusher

	ActionCable

Apollo 2

Apollo 2 is supported by implementing Apollo Links.

Apollo 2 – Pusher

graphql-ruby-client includes support for subscriptions with Pusher and ApolloLink.

To use it, add PusherLink before your HttpLink.

For example:

// Load Apollo stuff
import { ApolloLink } from 'apollo-link';
import { ApolloClient } from 'apollo-client';
import { HttpLink } from 'apollo-link-http';
import { InMemoryCache } from 'apollo-cache-inmemory';
// Load Pusher and create a client
import Pusher from "pusher-js"
var pusherClient = new Pusher("your-app-key", { cluster: "us2" })

// Make the HTTP link which actually sends the queries
const httpLink = new HttpLink({
 uri: '/graphql',
 credentials: 'include'
});

// Make the Pusher link which will pick up on subscriptions
const pusherLink = new PusherLink({pusher: pusherClient})

// Combine the two links to work together
const link = ApolloLink.from([pusherLink, httpLink])

// Initialize the client
const client = new ApolloClient({
 link: link,
 cache: new InMemoryCache()
});

This link will check responses for the X-Subscription-ID header, and if it’s present, it will use that value to subscribe to Pusher for future updates.

Apollo 2 – ActionCable

graphql-ruby-client includes support for subscriptions with ActionCable and ApolloLink.

To use it, construct a split link that routes:

	subscription queries to an ActionCableLink; and

	other queries to an HttpLink

For example:

import { ApolloLink } from 'apollo-link';
import { ApolloClient } from 'apollo-client';
import { HttpLink } from 'apollo-link-http';
import { InMemoryCache } from 'apollo-cache-inmemory';
import ActionCable from 'actioncable';
import ActionCableLink from 'graphql-ruby-client/subscriptions/ActionCableLink';

const cable = ActionCable.createConsumer()

const httpLink = new HttpLink({
 uri: '/graphql',
 credentials: 'include'
});

const hasSubscriptionOperation = ({ query: { definitions } }) => {
 return definitions.some(
 ({ kind, operation }) => kind === 'OperationDefinition' && operation === 'subscription'
)
}

const link = ApolloLink.split(
 hasSubscriptionOperation,
 new ActionCableLink({cable}),
 httpLink
);

const client = new ApolloClient({
 link: link,
 cache: new InMemoryCache()
});

Apollo 1

graphql-ruby-client includes support for Apollo 1 client subscriptions over {% internal_link “Pusher”, “/subscriptions/pusher_implementation” %} or {% internal_link “ActionCable”, “/subscriptions/action_cable_implementation” %}.

To use it, require subscriptions/addGraphQLSubscriptions and call the function with your network interface and transport client (example below).

See the {% internal_link “Subscriptions guide”, “/subscriptions/overview” %} for information about server-side setup.

Apollo 1 – Pusher

Pass {pusher: pusherClient} to use Pusher:

// Load Pusher and create a client
var Pusher = require("pusher-js")
var pusherClient = new Pusher(appKey, options)

// Add subscriptions to the network interface with the `pusher:` options
var addGraphQLSubscriptions = require("graphql-ruby-client/subscriptions/addGraphQLSubscriptions")
addGraphQLSubscriptions(myNetworkInterface, {pusher: pusherClient})

// Optionally, add persisted query support:
var OperationStoreClient = require("./OperationStoreClient")
RailsNetworkInterface.use([OperationStoreClient.apolloMiddleware])

Apollo 1 – ActionCable

By passing {cable: cable}, all subscription queries will be routed to ActionCable.

For example:

// Load ActionCable and create a consumer
var ActionCable = require('actioncable')
var cable = ActionCable.createConsumer()
window.cable = cable

// Load ApolloClient and create a network interface
var apollo = require('apollo-client')
var RailsNetworkInterface = apollo.createNetworkInterface({
 uri: '/graphql',
 opts: {
 credentials: 'include',
 },
 headers: {
 'X-CSRF-Token': $("meta[name=csrf-token]").attr("content"),
 }
});

// Add subscriptions to the network interface
var addGraphQLSubscriptions = require("graphql-ruby-client/subscriptions/addGraphQLSubscriptions")
addGraphQLSubscriptions(RailsNetworkInterface, {cable: cable})

// Optionally, add persisted query support:
var OperationStoreClient = require("./OperationStoreClient")
RailsNetworkInterface.use([OperationStoreClient.apolloMiddleware])

layout: guide
doc_stub: false
search: true
section: JavaScript Client
title: Overview
desc: Getting Started with GraphQL-Ruby’s Javascript client, graphql-ruby-client.
index: 0

There is a JavaScript client for GraphQL-Ruby, graphql-ruby-client.

You can install it from NPM or Yarn:

yarn add graphql-ruby-client
npm install graphql-ruby-client

The source code is in the graphql-ruby repository [https://github.com/rmosolgo/graphql-ruby/tree/master/javascript_client].

See detailed guides for more info about its features:

	{% internal_link “sync CLI”, “javascript_client/sync” %} for use with graphql-pro [http://graphql.pro]’s persisted query backend

	Subscription support:

	{% internal_link “Apollo integration”, “/javascript_client/apollo_subscriptions” %}

	{% internal_link “Relay integration”, “/javascript_client/relay_subscriptions” %}

layout: guide
doc_stub: false
search: true
section: JavaScript Client
title: Relay Subscriptions
desc: GraphQL subscriptions with GraphQL-Ruby and Relay Modern
index: 3

graphql-ruby-client includes support for subscriptions with Relay Modern over {% internal_link “Pusher”, “/subscriptions/pusher_implementation” %} or {% internal_link “ActionCable”, “/subscriptions/action_cable_implementation” %}.

To use it, require subscriptions/createHandler and call the function with your client and optionally, your OperationStoreClient.

See the {% internal_link “Subscriptions guide”, “/subscriptions/overview” %} for information about server-side setup.

Pusher

Subscriptions with Pusher require two things:

	A client from the pusher-js library

	A fetchOperation function for sending the subscription operation to the server

Pusher client

Pass pusher: to get Subscription updates over Pusher:

// Require the helper function
var createHandler = require("graphql-ruby-client/subscriptions/createHandler")

// Prepare a Pusher client
var Pusher = require("pusher-js")
var pusherClient = new Pusher(appKey, options)

// Create a Relay Modern-compatible handler
var subscriptionHandler = createHandler({
 pusher: pusherClient,
 fetchOperation: null // TODO!
})

// Create a Relay Modern network with the handler
var network = Network.create(fetchQuery, subscriptionHandler)

fetchOperation function

The fetchOperation function can be extracted from your fetchQuery function. Its signature is:

// Returns a promise from `fetch`
function fetchOperation(operation, variables, cacheConfig) {
 return fetch(...)
}

	operation, variables, and cacheConfig are the first three arguments to the fetchQuery function.

	The function should call fetch and return the result (a Promise of a Response).

For example, Environment.js may look like:

// This function sends a GraphQL query to the server
const fetchOperation = function(operation, variables, cacheConfig) {
 const bodyValues = {
 variables,
 operationName: operation.name,
 }
 const useStoredOperations = process.env.NODE_ENV === "production"
 if (useStoredOperations) {
 // In production, use the stored operation
 bodyValues.operationId = OperationStoreClient.getOperationId(operation.name)
 } else {
 // In development, use the query text
 bodyValues.query = operation.text
 }
 return fetch('http://localhost:3000/graphql', {
 method: 'POST',
 opts: {
 credentials: 'include',
 },
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(bodyValues),
 })
}

// `fetchQuery` uses `fetchOperation`, but returns a Promise of JSON
const fetchQuery = (operation, variables, cacheConfig, uploadables) => {
 return fetchOperation(operation, variables, cacheConfig).then(response => {
 return response.json()
 })
}

// Subscriptions uses the same `fetchOperation` function for initial subscription requests
const subscriptionHandler = createHandler({pusher: pusherClient, fetchOperation: fetchOperation})
// Combine them into a `Network`
const network = Network.create(fetchQuery, subscriptionHandler)

Since OperationStoreClient is in the fetchOperation function, it will apply to all GraphQL operations.

ActionCable

With this configuration, subscription queries will be routed to ActionCable.

For example:

// Require the helper function
var createHandler = require("graphql-ruby-client/subscriptions/createHandler")
// Optionally, load your OperationStoreClient
var OperationStoreClient = require("./OperationStoreClient")

// Create a Relay Modern-compatible handler
var subscriptionHandler = createHandler({
 cable: cable,
 operations: OperationStoreClient,
})

// Create a Relay Modern network with the handler
var network = Network.create(fetchQuery, subscriptionHandler)

layout: guide
doc_stub: false
search: true
section: JavaScript Client
title: OperationStore Sync
desc: Javascript tooling for persisted queries with GraphQL-Ruby
index: 1

JavaScript support for GraphQL projects using graphql-pro [http://graphql.pro]’s OperationStore for persisted queries.

	sync CLI

	Relay support

	Apollo Client support

	Apollo Link support

	Plain JS support

	Authorization

See the {% internal_link “OperationStore guide”, “/operation_store/overview” %} for server-side setup.

sync utility

This package contains a command line utility, graphql-ruby-client sync:

$ graphql-ruby-client sync # ...
Authorizing with HMAC
Syncing 4 operations to http://myapp.com/graphql/operations...
 3 added
 1 not modified
 0 failed
Generating client module in app/javascript/graphql/OperationStoreClient.js...
✓ Done!

sync Takes several options:

option | description
——–|———-
--url | {% internal_link “Sync API”, “/operation_store/getting_started.html#add-routes” %} url
--path | Local directory to search for .graphql / .graphql.js files
--client | Client ID ({% internal_link “created on server”, “/operation_store/client_workflow” %})
--secret | Client Secret ({% internal_link “created on server”, “/operation_store/client_workflow” %})
--outfile | Destination for generated JS code
--add-typename | Add __typename to all selection sets (for use with Apollo Client)

You can see these and a few others with graphql-ruby-client sync --help.

Use with Relay

graphql-ruby-client can persist queries from relay-compiler using the embedded @relayHash value.

To sync your queries with the server, use the --path option to point to your __generated__ directory, for example:

sync a Relay project
$ graphql-ruby-client sync --path=src/__generated__ --outfile=src/OperationStoreClient.js --url=...

Then, the generated code may be integrated with Relay’s Network Layer [https://facebook.github.io/relay/docs/network-layer.html]:

// ...
// require the generated module:
const OperationStoreClient = require('./OperationStoreClient')

// ...
function fetchQuery(operation, variables, cacheConfig, uploadables) {
 const requestParams = {
 variables,
 operationName: operation.name,
 }

 if (process.env.NODE_ENV === "production")
 // In production, use the stored operation
 requestParams.operationId = OperationStoreClient.getOperationId(operation.name)
 } else {
 // In development, use the query text
 requestParams.query = operation.text,
 }

 return fetch('/graphql', {
 method: 'POST',
 headers: { /*...*/ },
 body: JSON.stringify(requestParams),
 }).then(/* ... */);
}

// ...

(Only Relay Modern is supported. Legacy Relay can’t generate static queries.)

Use with Apollo Client

Use the --path option to point at your .graphql files:

$ graphql-ruby-client sync --path=src/graphql/ --url=...

Then, load the generated module and add its .apolloMiddleware to your network interface with .use([...]):

// load the generated module
var OperationStoreClient = require("./OperationStoreClient")

// attach it as middleware in production
// (in development, send queries to the server as normal)
if (process.env.NODE_ENV === "production") {
 MyNetworkInterface.use([OperationStoreClient.apolloMiddleware])
}

Now, the middleware will replace query strings with operationIds.

Use with Apollo Link

Use the --path option to point at your .graphql files:

$ graphql-ruby-client sync --path=src/graphql/ --url=...

Then, load the generated module and add its .apolloLink to your Apollo Link:

// load the generated module
var OperationStoreClient = require("./OperationStoreClient")

// Integrate the link to another link:
const link = ApolloLink.from([
 authLink,
 OperationStoreClient.apolloLink,
 httpLink,
])

// Create a client
const client = new ApolloClient({
 link: link,
 cache: new InMemoryCache(),
});

Update the controller: Apollo Link supports extra parameters nested as params[:extensions][:operationId], so update your controller to add that param to context:

app/controllers/graphql_controller.rb
context = {
 # ...
 # Support Apollo Link:
 operation_id: params[:extensions][:operationId]
}

Now, context[:operation_id] will be used to fetch a query from the database.

Use with plain JavaScript

OperationStoreClient.getOperationId takes an operation name as input and returns the server-side alias for that operation:

var OperationStoreClient = require("./OperationStoreClient")

OperationStoreClient.getOperationId("AppHomeQuery") // => "my-frontend-app/7a8078c7555e20744cb1ff5a62e44aa92c6e0f02554868a15b8a1cbf2e776b6f"
OperationStoreClient.getOperationId("ProductDetailQuery") // => "my-frontend-app/6726a3b816e99b9971a1d25a1205ca81ecadc6eb1d5dd3a71028c4b01cc254c1"

Post the operationId in your GraphQL requests:

// Lookup the operation name:
var operationId = OperationStoreClient.getOperationId(operationName)

// Include it in the params:
$.post("/graphql", {
 operationId: operationId,
 variables: queryVariables,
}, function(response) {
 // ...
})

Authorization

OperationStore uses HMAC-SHA256 to {% internal_link “authenticate requests” , “/operation_store/access_control” %}.

Pass the key to graphql-ruby-client sync as --secret to authenticate it:

$ export MY_SECRET_KEY= "abcdefg..."
$ graphql-ruby-client sync ... --secret=$MY_SECRET_KEY
...
Authenticating with HMAC
...

layout: guide
doc_stub: false
search: true
section: Mutations
title: Mutation authorization
desc: Checking permissions for mutations
index: 3

Before running a mutation, you probably want to do a few things:

	Make sure the current user has permission to try this mutation

	Load some objects from the database, using some ID inputs

	Check if the user has permission to modify those loaded objects

This guide describes how to accomplish that workflow with GraphQL-Ruby.

Checking the user permissions

Before loading any data from the database, you might want to see if the user has a certain permission level. For example, maybe only .admin? users can run Mutation.promoteEmployee.

This check can be implemented using the #ready? method in a mutation:

class Mutations::PromoteEmployee < Mutations::BaseMutation
 def ready?(**args)
 if !context[:current_user].admin?
 raise GraphQL::ExecutionError, "Only admins can run this mutation"
 else
 # Return true to continue the mutation:
 true
 end
 end

 # ...
end

Now, when any non-admin user tries to run the mutation, it won’t run. Instead, they’ll get an error in the response.

Additionally, #ready? may return false, { ... } to return {% internal_link “errors as data”, “/mutations/mutation_errors” %}:

def ready?
 if !context[:current_user].allowed?
 return false, { errors: ["You don't have permission to do this"]}
 else
 true
 end
end

Loading and authorizing objects

Often, mutations take IDs as input and use them to load records from the database. GraphQL-Ruby can load IDs for you when you provide a loads: option.

In short, here’s an example:

class Mutations::PromoteEmployee < Mutations::BaseMutation
 # `employeeId` is an ID, Types::Employee is an _Object_ type
 argument :employee_id, ID, required: true, loads: Types::Employee

 # Behind the scenes, `:employee_id` is used to fetch an object from the database,
 # then the object is authorized with `Employee.authorized?`, then
 # if all is well, the object is injected here:
 def resolve(employee:)
 employee.promote!
 end
end

It works like this: if you pass a loads: option, it will:

	Automatically remove _id from the name and pass that name for the as: option

	Add a prepare hook to fetch an object with the given ID (using {{ “Schema.object_from_id” | api_doc }})

	Check that the fetched object’s type matches the loads: type (using {{ “Schema.resolve_type” | api_doc }})

	Run the fetched object through its type’s .authorized? hook (see {% internal_link “Authorization”, “/authorization/authorization” %})

	Inject it into #resolve using the object-style name (employee:)

In this case, if the argument value is provided by object_from_id doesn’t return a value, the mutation will fail with an error.

If you don’t want this behavior, don’t use it. Instead, create arguments with type ID and use them your own way, for example:

No special loading behavior:
argument :employee_id, ID, required: true

Can this user perform this action?

Sometimes you need to authorize a specific user-object(s)-action combination. For example, .admin? users can’t promote all employees! They can only promote employees which they manage.

You can add this check by implementing a #authorized? method, for example:

def authorized?(employee:)
 context[:current_user].manager_of?(employee)
end

When #authorized? returns false, the mutation will be halted. If it returns true (or something truthy), the mutation will continue.

Adding errors

To add errors as data (as described in {% internal_link “Mutation errors”, “/mutations/mutation_errors” %}), return a value along with false, for example:

def authorized?(employee:)
 if context[:current_user].manager_of?(employee)
 true
 else
 return false, { errors: ["Can't promote an employee you don't manage"] }
 end
end

Alternatively, you can add top-level errors by raising GraphQL::ExecutionError, for example:

def authorized?(employee:)
 if !context[:current_user].manager_of?(employee)
 raise GraphQL::ExecutionError, "You can only promote your _own_ employees"
 end
end

In either case (returning [false, data] or raising an error), the mutation will be halted.

Finally, doing the work

Now that the user has been authorized in general, data has been loaded, and objects have been validated in particular, you can modify the database using #resolve:

def resolve(employee:)
 if employee.promote
 {
 employee: employee,
 errors: [],
 }
 else
 # See "Mutation Errors" for more:
 {
 errors: employee.errors.full_messages
 }
 end
end

layout: guide
doc_stub: false
search: true
section: Mutations
title: Mutation Classes
desc: Use mutation classes to implement behavior, then hook them up to your schema.
class_based_api: true
index: 1
redirect_from:

	/queries/mutations/

GraphQL mutations are special fields: instead of reading data or performing calculations, they may modify the application state. For example, mutation fields may:

	Create, update or destroy records in the database

	Establish associations between already-existing records in the database

	Increment counters

	Create, modify or delete files

	Clear caches

These actions are called side effects.

Like all GraphQL fields, mutation fields:

	Accept inputs, called arguments

	Return values via fields

GraphQL-Ruby includes two classes to help you write mutations:

	{{ “GraphQL::Schema::Mutation” | api_doc }}, a bare-bones base class

	{{ “GraphQL::Schema::RelayClassicMutation” | api_doc }}, a base class with a set of nice conventions that also supports the Relay Classic mutation specification.

Besides those, you can also use the plain {% internal_link “field API”, “/type_definitions/objects#fields” %} to write mutation fields.

An additional null helper method is provided on classes inheriting from GraphQL::Schema::Mutation to allow setting the nullability of the mutation. This is not required and defaults to true.

Example mutation class

You should add a base class to your application, for example:

class Mutations::BaseMutation < GraphQL::Schema::RelayClassicMutation
end

Then extend it for your mutations:

class Mutations::CreateComment < Mutations::BaseMutation
 null true

 argument :body, String, required: true
 argument :post_id, ID, required: true

 field :comment, Types::Comment, null: true
 field :errors, [String], null: false

 def resolve(body:, post_id:)
 post = Post.find(post_id)
 comment = post.comments.build(body: body, author: context[:current_user])
 if comment.save
 # Successful creation, return the created object with no errors
 {
 comment: comment,
 errors: [],
 }
 else
 # Failed save, return the errors to the client
 {
 comment: nil,
 errors: comment.errors.full_messages
 }
 end
 end
end

The #resolve method should return a hash whose symbols match the field names.

(See {% internal_link “Mutation Errors”, “/mutations/mutation_errors” %} for more information about returning errors.)

Hooking up mutations

Mutations must be attached to the mutation root using the mutation: keyword, for example:

class Types::Mutation < Types::BaseObject
 field :create_comment, mutation: Mutations::CreateComment
end

Auto-loading arguments

In most cases, a GraphQL mutation will act against a given global relay ID. Loading objects from these global relay IDs can require a lot of boilerplate code in the mutation’s resolver.

An alternative approach is to use the loads: argument when defining the argument:

class Mutations::AddStar < Mutations::BaseMutation
 argument :post_id, ID, required: true, loads: Types::Post

 field :post, Types::Post, null: true

 def resolve(post:)
 post.star

 {
 post: post,
 }
 end
end

By specifying that the post_id argument loads a Types::Post object type, a Post object will be loaded via {% internal_link “Schema#object_from_id”, “/schema/definition.html#object-identification-hooks” %} with the provided post_id.

All arguments that end in _id and use the loads: method will have their _id suffix removed. For example, the mutation resolver above receives a post argument which contains the loaded object, instead of a post_id argument.

The loads: option also works with list of IDs, for example:

class Mutations::AddStars < Mutations::BaseMutation
 argument :post_ids, [ID], required: true, loads: Types::Post

 field :posts, [Types::Post], null: true

 def resolve(posts:)
 posts.map(&:star)

 {
 posts: posts,
 }
 end
end

All arguments that end in _ids and use the loads: method will have their _ids suffix removed and an s appended to their name. For example, the mutation resolver above receives a posts argument which contains all the loaded objects, instead of a post_ids argument.

In some cases, you may want to control the resulting argument name. This can be done using the as: argument, for example:

class Mutations::AddStar < Mutations::BaseMutation
 argument :post_id, ID, required: true, loads: Types::Post, as: :something

 field :post, Types::Post, null: true

 def resolve(something:)
 something.star

 {
 post: something
 }
 end
end

In the above examples, loads: is provided a concrete type, but it also supports abstract types (i.e. interfaces and unions).

layout: guide
doc_stub: false
search: true
section: Mutations
title: Mutation errors
desc: Tips for handling and returning errors from mutations
index: 2

How can you handle errors inside mutations? Let’s explore a couple of options.

Raising Errors

One way to handle an error is by raising, for example:

def resolve(id:, attributes:)
 # Will crash the query if the data is invalid:
 Post.find(id).update!(attributes.to_h)
 # ...
end

Or:

def resolve(id:, attributes:)
 if post.update(attributes)
 { post: post }
 else
 raise GraphQL::ExecutionError, post.errors.full_messages.join(", ")
 end
end

This kind of error handling does express error state (either via HTTP 500 or by the top-level "errors" key), but it doesn’t take advantage of GraphQL’s type system and can only express one error at a time. It works, but a stronger solution is to treat errors as data.

Errors as Data

Another way to handle rich error information is to add error types to your schema, for example:

class Types::UserError < Types::BaseObject
 description "A user-readable error"

 field :message, String, null: false,
 description: "A description of the error"
 field :path, [String], null: true,
 description: "Which input value this error came from"
end

Then, add a field to your mutation which uses this error type:

class Mutations::UpdatePost < Mutations::BaseMutation
 # ...
 field :errors, [Types::UserError], null: false
end

And in the mutation’s resolve method, be sure to return errors: in the hash:

def resolve(id:, attributes:)
 post = Post.find(id)
 if post.update(attributes)
 {
 post: post,
 errors: [],
 }
 else
 # Convert Rails model errors into GraphQL-ready error hashes
 user_errors = post.errors.map do |attribute, message|
 # This is the GraphQL argument which corresponds to the validation error:
 path = ["attributes", attribute.camelize]
 {
 path: path,
 message: message,
 }
 end
 {
 post: post,
 errors: user_errors,
 }
 end
end

Now that the field returns errors in its payload, it supports errors as part of the incoming mutations, for example:

mutation($postId: ID!, $postAttributes: PostAttributes!) {
 updatePost(id: $postId, attributes: $postAttributes) {
 # This will be present in case of success or failure:
 post {
 title
 comments {
 body
 }
 }
 # In case of failure, there will be errors in this list:
 errors {
 path
 message
 }
 }
}

In case of a failure, you might get a response like:

{
 "data" => {
 "createPost" => {
 "post" => nil,
 "errors" => [
 { "message" => "Title can't be blank", "path" => ["attributes", "title"] },
 { "message" => "Body can't be blank", "path" => ["attributes", "body"] }
]
 }
 }
}

Then, client apps can show the error messages to end users, so they might correct the right fields in a form, for example.

Nullable Mutation Payload Fields

To benefit from “Errors as Data” described above, mutation fields must have null: true. Why?

Well, for non-null fields (which have null: false), if they return nil, then GraphQL aborts the query and removes those fields from the response altogether.

In mutations, when errors happen, the other fields may return nil. So, if those other fields have null: false, but they return nil, the GraphQL will panic and remove the whole mutation from the response, including the errors!

In order to have the rich error data, even when other fields are nil, those fields must have null: true so that the type system can be obeyed when errors happen.

Here’s an example of a nullable field (good!):

class Mutations::UpdatePost < Mutations::BaseMutation
 # Use `null: true` to support rich errors:
 field :post, Types::Post, null: true
 # ...
end

layout: guide
doc_stub: false
search: true
section: Mutations
title: Mutation Root
desc: The Mutation object is the entry point for mutation operations.
class_based_api: true
index: 0

GraphQL mutations all begin with the mutation keyword:

mutation($accountNumber: ID!, $newBalance: Int!) {
^^^^ here
 setAccountBalance(accountNumber: $accountNumber, newBalance: $newBalance) {
 # ...
 }
}

Operations that begin with mutation get special treatment by the GraphQL runtime: root fields are guaranteed
to be executed sequentially. This way, the effect of a series of mutations is predictable.

Mutations are executed by a specific GraphQL object, Mutation. This object is defined like any other GraphQL object:

class Types::Mutation < Types::BaseObject
 # ...
end

Then, it must be attached to your schema with the mutation(...) configuration:

class Schema < GraphQL::Schema
 # ...
 mutation(Types::Mutation)
end

Now, whenever an incoming request uses the mutation keyword, it will go to Mutation.

See {% internal_link “Mutation Classes”, “/mutations/mutation_classes” %} for some helpers to define mutation fields.

layout: guide
doc_stub: false
search: true
section: GraphQL Pro - OperationStore
title: Access Control
desc: Manage authentication & visibility for your OperationStore server.
index: 4
pro: true

There are two considerations for incoming sync requests:

	Authentication: is this request coming from a legitimate source?

	Authorization: does this source have permission to save these queries?

Authentication

When you [add a client]({{ site.base_url }}/operation_store/client_workflow#add-a-client), you also associate a secret with that client. You can use the default or provide your own and you can update a client secret at any time. By updating a secret, old secrets become invalid.

This secret is used to add an authorization header, generated with HMAC-SHA256. With this header, the server can assert:

	The request came from an authorized client

	The request was not corrupted in transit

For more info about HMAC, see Wikipedia [https://en.wikipedia.org/wiki/Hash-based_message_authentication_code] or Ruby’s OpenSSL::HMAC [https://ruby-doc.org/stdlib-2.4.0/libdoc/openssl/rdoc/OpenSSL/HMAC.html] support.

The Authorization header takes the form:

"GraphQL::Pro #{client_name} #{hmac}"

{% internal_link “graphql-ruby-client”, “/javascript_client/sync” %} adds this header to outgoing requests by using the provided --client and --secret values.

Authorization

Incoming operations are validated. If you’re using GraphQL::Pro’s {% internal_link “visibility authorization”, “/pro/authorization#visibility-authorization” %}, you must determine whether the current client can see the types and fields which are used in the operation.

You can implement authorization for incoming queries with the authorize(..., operation_store:) option, which accepts a {% internal_link “auth strategy class”, “/pro/authorization#custom-authorization-strategy” %}, for example:

authorize(:pundit, operation_store: OperationStoreStrategy)
Or:
authorize(MyAuthStrategy, operation_store: OperationStoreStrategy)

This strategy class is used only for incoming persisted operations. The strategy class may use ctx[:current_client_name], which is added by the OperationStore.

Here’s an example strategy class which allows "stafftools" apps to use view: :admin fields, but hides those fields from everyone else:

class OperationStoreStrategy
 def initialize(ctx)
 @client_name = ctx[:current_client_name]
 end

 # Only stafftools apps can save queries with `:admin` fields
 # Anyone can save queries with `:public` fields.
 def allowed?(gate, _obj)
 case gate.role
 when :admin
 @client_name == "stafftools"
 when :public
 true
 else
 raise "Unexpected auth role: #{gate.role}"
 end
 end
end

If you don’t specify a strategy, the default is to fail all view: checks. This way, private fields are not disclosed via OperationStore requests.

layout: guide
doc_stub: false
search: true
section: GraphQL Pro - OperationStore
title: Client Workflow
desc: Add clients to the system, then sync their operations with the database.
index: 2
pro: true

To use persisted queries with your client application, you must:

	Set up OperationStore, as described in {% internal_link “Getting Started”,”/operation_store/getting_started” %}

	Add the client to the system

	Sync operations from the client to the server

	Send params[:operationId] from the client app

This documentation also touches on {% internal_link “graphql-ruby-client sync”, “/javascript_client/sync” %}, a JavaScript client library for using OperationStore.

Add a Client

Clients are registered via {% internal_link “the dashboard”,”/operation_store/getting_started#add-routes” %}:

{{ “/operation_store/add_a_client.png” | link_to_img:”Add a Client for Persisted Queries” }}

A default secret is provided for you, but you can also enter your own. The secret is used for {% internal_link “HMAC authentication”, “/operation_store/access_control” %}.

(Are you interested in a Ruby API for this? Please {% open_an_issue “OperationStore Ruby API” %} or email support@graphql.pro.)

Syncing

Once a client is registered, it can push queries to the server via {% internal_link “the Sync API”,”/operation_store/getting_started#add-routes” %}.

The easiest way to sync is with graphql-ruby-client sync, a command-line tool written in JavaScript ({% internal_link “Sync Guide”, “/javascript_client/sync” %})

In short, it:

	Finds GraphQL queries from .graphql files or relay-compiler output in the provided --path

	Adds an {% internal_link “Authentication header”,”/operation_store/access_control” %} based on the provided --client and --secret

	Sends the operations to the provided --url

	Generates a JavaScript module into the provided --outfile

For example:

{{ “/operation_store/sync_example.png” | link_to_img:”OperationStore client sync” }}

For help syncing in another language, you can take inspiration from the JavaScript implementation [https://github.com/rmosolgo/graphql-ruby/tree/master/javascript_client], {% open_an_issue “Implementing operation sync in another language” %}, or email support@graphql.pro.

Client Usage

See the {% internal_link “Sync Guide”, “/javascript_client/sync” %} for using OperationStore with Relay Modern, Apollo 1.x, Apollo Link, or plain JavaScript.

To run stored operations from another client, send a param called operationId which is composed of:

 {
 # ...
 operationId: "my-relay-app/ce79aa2784fc..."
 # ^ client id / ^ operation id
 }

The server will use those values to fetch an operation from the database.

Next Steps

Learn more about OperationStore’s {% internal_link “authentication”, “/operation_store/access_control” %} or read some tips for {% internal_link “server management”,”/operation_store/server_management” %}.

layout: guide
doc_stub: false
search: true
section: GraphQL Pro - OperationStore
title: Getting Started
desc: Add GraphQL::Pro::OperationStore to your app
index: 1
pro: true

To use GraphQL::Pro::OperationStore with your app, follow these steps:

	Check the dependencies to make sure OperationStore is supported

	Prepare the database for OperationStore’s data

	Add OperationStore to your GraphQL schema

	Add routes for the Dashboard and sync API

	Update your controller to support persisted queries

	{% internal_link “Add a client”,”/operation_store/client_workflow” %} to start syncing queries

Dependencies

OperationStore requires two gems in your application environment:

	ActiveRecord to access tables in your database. (Using another ORM or backend? Please {% open_an_issue “Backend support request for OperationStore” %} to request support!)

	Rack: to serve the Dashboard and Sync API. (In Rails, this is provided by config/routes.md.)

These are bundled with Rails by default.

Prepare the Database

GraphQL::Pro::OperationStore requires some database tables. You can add these with a migration:

$ rails generate migration SetupOperationStore

Then open the migration file and add:

...
implement the change method with:
def change
 create_table :graphql_clients do |t|
 t.column :name, :string, null: false
 t.column :secret, :string, null: false
 t.timestamps
 end
 add_index :graphql_clients, :name, unique: true
 add_index :graphql_clients, :secret, unique: true

 create_table :graphql_client_operations do |t|
 t.references :graphql_client, null: false
 t.references :graphql_operation, null: false
 t.column :alias, :string, null: false
 t.timestamps
 end
 add_index :graphql_client_operations, [:graphql_client_id, :alias], unique: true, name: "graphql_client_operations_pairs"

 create_table :graphql_operations do |t|
 t.column :digest, :string, null: false
 t.column :body, :text, null: false
 t.column :name, :string, null: false
 t.timestamps
 end
 add_index :graphql_operations, :digest, unique: true

 create_table :graphql_index_entries do |t|
 t.column :name, :string, null: false
 end
 add_index :graphql_index_entries, :name, unique: true

 create_table :graphql_index_references do |t|
 t.references :graphql_index_entry, null: false
 t.references :graphql_operation, null: false
 end
 add_index :graphql_index_references, [:graphql_index_entry_id, :graphql_operation_id], unique: true, name: "graphql_index_reference_pairs"
end

Add OperationStore

To hook up the storage to your schema, add the plugin:

class MySchema < GraphQL::Schema
 # ...
 use GraphQL::Pro::OperationStore
end

Add Routes

To use OperationStore, add two routes to your app:

config/routes.rb

Include GraphQL::Pro's routing extensions:
using GraphQL::Pro::Routes

Rails.application.routes.draw do
 # ...
 # Add the Dashboard
 # TODO: authorize, see the dashboard guide
 mount MySchema.dashboard, at: "/graphql/dashboard"
 # Add the Sync API (authorization built-in)
 mount MySchema.operation_store_sync, at: "/graphql/sync"
end

MySchema.operation_store_sync receives pushes from clients. See {% internal_link “Client Workflow”,”/operation_store/client_workflow” %} for more info on how this endpoint is used.

MySchema.dashboard includes a web view to the OperationStore, visible at /graphql/dashboard. See the {% internal_link “Dashboard guide”, “/pro/dashboard” %} for more details, including authorization.

{{ “/operation_store/graphql_ui.png” | link_to_img:”GraphQL Persisted Operations Dashboard” }}

The are both Rack apps, so you can mount them in Sinatra or any other Rack app.

Update the Controller

Add operation_id: to your GraphQL context:

app/controllers/graphql_controller.rb
context = {
 # Relay / Apollo 1.x:
 operation_id: params[:operationId]
 # Or, Apollo Link:
 # operation_id: params[:extensions][:operationId]
}

MySchema.execute(
 # ...
 context: context,
)

OperationStore will use operation_id to fetch the operation from the database.

See {% internal_link “Server Management”,”/operation_store/server_management” %} for details about rejecting GraphQL from params[:query].

Next Steps

Sync your operations with the {% internal_link “Client Workflow”,”/operation_store/client_workflow” %}.

layout: guide
doc_stub: false
search: true
section: GraphQL Pro - OperationStore
title: Overview
desc: Learn how persisted queries work and how OperationStore implements them.
index: 0
pro: true

GraphQL::Pro::OperationStore uses ActiveRecord and Rack to maintain a normalized, deduplicated database of persisted queries for your GraphQL system.

In this guide, you’ll find:

	Description of persisted queries

	The rationale behind them

	How OperationStore works, in brief

In other guides, you can read more about:

	{% internal_link “Getting Started”,”/operation_store/getting_started” %} installing OperationStore in your app

	{% internal_link “Workflow”,”/operation_store/client_workflow” %} and usage for client apps

	{% internal_link “Authentication”,”/operation_store/access_control” %} for the sync API

	{% internal_link “Server Management”,”/operation_store/server_management” %} after your system is running

Also, you can find a demo app on GitHub [https://github.com/rmosolgo/graphql-pro-operation-store-example].

What are Persisted Queries?

Persisted queries are GraphQL queries (query, mutation, or subscription) that are saved on the server and invoked by clients by reference. In this arrangement, clients don’t send GraphQL queries over the network. Instead, clients send:

	Client name, to identify the client who is making the request

	Query alias, to specify which stored operation to run

	Query variables, to provide values for the stored operation

Then, the server uses the identifier to fetch the full GraphQL document from the database.

Without persisted queries, clients send the whole document:

Before, without persisted queries
query_string = "query GetUserDetails($userId: ID!) { ... }"

MyGraphQLEndpoint.post({
 query: query_string,
 operationName: "GetUserDetails",
 variables: { userId: "100" },
})

But with persisted queries, the full document isn’t sent because the server already has a copy of it:

After, with persisted queries:
MyGraphQLEndpoint.post({
 operationId: { "relay-app-v1/fc84dbba3623383fdc",
 # client name / query alias (eg, @relayHash)
 variables: { userId: "100" },
})

Why Persisted Queries?

Using persisted queries improves the security, efficiency and visibility of your GraphQL system.

Security

Persisted queries improve security because you can reject arbitrary GraphQL queries, removing an attack vector from your system. The query database serves a whitelist, so you can be sure that no unexpected queries will hit your system.

For example, after all clients have migrated to persisted queries, you can reject arbitrary GraphQL in production:

app/controllers/graphql_controller.rb
if Rails.env.production? && params[:query].present?
 # Reject arbitrary GraphQL in production:
 render json: { errors: [{ message: "Raw GraphQL is not accepted" }]}
else
 # ...
end

Efficiency

Persisted queries improve the efficiency of your system by reducing HTTP traffic. Instead of repeatedly sending GraphQL over the wire, queries are fetched from the database, so your requests require less bandwidth.

For example, before using persisted queries, the entire query is sent to the server:

{{ “/operation_store/request_before.png” | link_to_img:”GraphQL request without persisted queries” }}

But after using persisted queries, only the query identification info is sent to the server:

{{ “/operation_store/request_after.png” | link_to_img:”GraphQL request with persisted queries” }}

Visibility

Persisted queries improve visibility because you can track GraphQL usage from a single location. OperationStore maintains an index of type, field and argument usage so that you can analyze your traffic.

{{ “/operation_store/operation_index.png” | link_to_img:”Index of GraphQL usage with persisted queries” }}

How it Works

OperationStore uses tables in your database to store normalized, deduplicated GraphQL strings. The database is immutable: new operations may be added, but operations are never modified or removed.

When clients {% internal_link “sync their operations”,”/operation_store/client_workflow” %}, requests are {% internal_link “authenticated”,”/operation_store/access_control” %}, then the incoming GraphQL is validated, normalized, and added to the database if needed. Also, the incoming client name is associated with all operations in the payload.

Then, at runtime, clients send an operation ID to run a persisted query. It looks like this in params:

params[:operationId] # => "relay-app-v1/810c97f6631001..."

OperationStore uses this to fetch the matching operation from the database. From there, the query is evaluated normally.

Getting Started

See the {% internal_link “getting started guide”,”/operation_store/getting_started” %} to add OperationStore to your app.

layout: guide
doc_stub: false
search: true
section: GraphQL Pro - OperationStore
title: Server Management
desc: Tips for administering persisted queries with OperationStore
index: 3
pro: true

After {% internal_link “getting started”,”/operation_store/getting_started” %}, here some things to keep in mind.

Rejecting Arbitrary Queries

With persisted queries, you can stop accepting arbitrary GraphQL input. This way, malicious users can’t run large or inappropriate queries on your server.

In short, you can ignore arbitrary GraphQL by skipping the first argument of MySchema.execute:

app/controllers/graphql.rb

Don't pass a query string; ignore `params[:query]`
MySchema.execute(
 context: context,
 variables: params[:variables],
 operation_name: params[:operationName],
)

However, take these points into consideration:

	Are any previous clients using arbitrary GraphQL? (For example, old versions of native apps or old web pages may still be sending GraphQL.)

	Should some users still be allowed to send custom strings? (For example, do staff members use GraphiQL to develop new features or debug issues?)

If those apply to you, you can apply some logic to query_string:

Allow arbitrary GraphQL:
- from staff users
- in development
query_string = if current_user.staff? || Rails.env.development?
 params[:query]
else
 nil
end

MySchema.execute(
 query_string, # maybe nil, that's OK.
 context: context,
 variables: params[:variables],
 operation_name: params[:operationName],
)

Deleting Data

Clients can only add to the database, but as an administrator, you can also delete entries from the database. (Make sure you {% internal_link “authorize access to the Dashboard”,”/pro/dashboard” %}.)This is a dangerous operation: by deleting something, any clients who depend on that data will crash.

Some reasons to delete from the database are:

	Data was pushed in error; the data is not used

	The queries are invalid or unsafe; it’s better to remove them than to keep them

If this is true, you can use “Delete” buttons to remove individual operations or entire clients.

Integration with Your Application

It’s on the road map to add a Ruby API to OperationStore so that you can integrate it with your application. For example, you might:

	Create clients that correspond to users in your system

	Show client secrets via the Dashboard so that users can save them

	Render your own administration dashboards with OperationStore data

If this interests you, please {% open_an_issue “OperationStore Ruby API” %} or email support@graphql.pro.

layout: guide
doc_stub: false
search: true
section: GraphQL Pro
title: Authorization Framework
desc: GraphQL::Pro’s comprehensive access control system, including CanCan and Pundit integrations
index: 2
pro: true

NOTE: A new {% internal_link “Pundit integration”, “/authorization/pundit_integration” %} and {% internal_link “CanCan integration”,
“/authorization/can_can_integration” %} are available. They leverage GraphQL-Ruby’s new {% internal_link “built-in auth”, “/authorization/overview” %} system and has better support for inheritance and customization. If possible, use those instead!

GraphQL::Pro provides a comprehensive, unified authorization framework for the GraphQL runtime.

Fields and types can be authorized at runtime, rejected during validation, or hidden entirely. Default authorization can be applied at schema-level

GraphQL::Pro integrates has out-of-the-box Pundit support and CanCan support and supports custom authorization strategies

Configuration

To use authorization, specify an authorization strategy in your schema:

MySchema = GraphQL::Schema.define do
 # ...
 authorization :pundit
 # or:
 # authorization :cancan
 # authorization CustomAuthClass
end

(See below for details on these strategies.)

Then, provide a current_user: in your execution context:

Authenticate somehow:
current_user = User.find(session[:current_user_id])
Then pass the user as `current_user:`
result = MySchema.execute(query_string, context: { current_user: current_user })

current_user will be used by the authorization hooks as described below.

Fallback Authorization

You can specify a fallback auth configuration for the entire schema:

MySchema = GraphQL::Schema.define do
 # Always require logged-in users to see anything:
 authorization(..., fallback: { view: :logged_in })
end

This rule will be applied to fields which don’t have a rule of their own or a rule on their return type.

Current User

You can customize the current_user: context key with authorization(..., current_user: ...):

MySchema = GraphQL::Schema.define do
 # Current user is identified as `ctx[:viewer]`
 authorization :pundit, current_user: :viewer
end

The authorization will use the specified key to find the current user in ctx.

Runtime Authorization

When a resolve function returns an object or list of objects, you can assert that the current user has permission to access that object. The authorize keyword defines a runtime permission.

You can specify a permission at field-level, for example:

Only allow access to this `balance` if current user is the owner:
field :balance, AccountBalanceType, authorize: :owner

This is the same:
field :balance, AccountBalanceType do
 authorize :owner
 # ...
end

Also, you can specify authentication at type-level, for example:

AccountBalanceType = GraphQL::ObjectType.define do
 name "AccountBalance"
 # Only billing administrators can see
 # objects of this type:
 authorize :billing_administrator
 # ...
end

Field-level and type-level permissions are additive: both checks must pass for a user to access an object.

Type-level permissions are applied according to an object’s runtime type (unions and interfaces don’t have authorization checks).

If an object doesn’t pass permission checks, it is removed from the response. If the object is part of a list, it is removed from the list. You can override this behavior with the unauthorized_object hook.

Authorize Values by Parent

You can also limit access to fields based on their parent objects with parent_role:. For example, to restrict a student’s GPA to that student:

StudentType = GraphQL::ObjectType.define do
 name "Student"
 field :name, !types.String
 field :gpa, types.Float do
 # only show `Student.gpa` if the
 # student is the viewer:
 authorize parent_role: :current_user
 end
end

This way, you can serve a subset of fields based on the object being queried.

Unauthorized Object

When an object fails a runtime authorization check, the default behavior is:

	return nil instead; OR

	if the object is part of a list, remove it from that list.

You can override this behavior by providing a schema-level unauthorized_object function:

MySchema = GraphQL::Schema.define do
 unauthorized_object ->(obj, ctx) { ... }
end
OR
MySchema = GraphQL::Schema.define do
 unauthorized_object(MyUnauthorizedObjectHook)
end

The function is called with two arguments:

	obj is the object which failed a runtime check

	ctx is the field context for the failed check

Within the function, you can:

	Write log entries

	Add GraphQL errors, for example:

Add an error to the graphql response:
err = GraphQL::ExecutionError.new("You don't have permission to see #{obj.name}")
ctx.add_error(err)

	Return a different value for the query.

To return a different value, use yield (or next for a Proc). For example:

module MyUnauthorizedObjectHook
 def self.call(obj, ctx)
 if obj.is_a?(User)
 # Write a log entry
 logger.log("Invalid user access: #{ctx[:current_user]} tried to access #{obj}")
 # Replace an unauthorized object with a null object
 yield(AnonymousUser)
 end
 end
end

For procs, use next instead of yield:

-> (obj, ctx) {
 if obj.is_a?(User)
 # Write a log entry
 logger.log("Invalid user access: #{ctx[:current_user]} tried to access #{obj}")
 # Replace an unauthorized object with a null object
 next(AnonymousUser)
 end
}

(yield isn’t valid for procs. Long story 😅.)

Using yield allows the library to skip objects entirely when nothing is yielded.

Access Authorization

You can prevent access to fields and types from certain users. (They can see them, but if they request them, the request is rejected with an error message.) Use the access: keyword for this feature.

Non-owners may _see_ these,
but they may not request them:
field :telephone_number, types.String, access: :owner

AddressType = GraphQL::ObjectType.define do
 name "Address"
 access :owner
 # ...
end

When a user requests access to an unpermitted field, GraphQL returns an error message. You can customize this error message by providing an unauthorized_fields hook:

MySchema = GraphQL::Schema.define do
 # ...
 unauthorized_fields ->(irep_nodes, ctx) {
 GraphQL::AnalysisError.new("Sorry, you're not allowed to see that!")
 }
end

The hook should return a {{ “GraphQL::AnalysisError” | api_doc }}. It is called with:

	irep_nodes: an array of {{ “GraphQL::InternalRepresentation::Node” | api_doc }}s which represent unpermitted fields in the incoming query.

	ctx: the {{ “GraphQL::Query::Context” | api_doc }} (which includes :current_user).

Visibility Authorization

You can hide fields and types from certain users. If they request these types or fields, the error message says that they don’t exist at all.

The view keyword specifies visibility permission:

These types and fields are
invisible to non-admins:

field-level:
field :social_security_number, types.String, view: :admin

type-level:
PassportApplicationType = GraphQL::ObjectType.define do
 name "PassportApplication"
 view :admin
 # ...
end

Pundit

NOTE: A new {% internal_link “Pundit integration”, “/authorization/pundit_integration” %} is available. It leverages GraphQL-Ruby’s new {% internal_link “built-in auth”, “/authorization/overview” %} system and has better support for inheritance and customization. If possible, use that one instead!

GraphQL::Pro includes built-in support for Pundit [https://github.com/elabs/pundit]:

MySchema = GraphQL::Schema.define do
 authorization(:pundit)
end

Now, GraphQL will use your *Policy classes during execution. To find a policy class:

	access and visibility checks use the type name (or return type name) to find a policy class

	runtime checks use the object to find a policy class (using Pundit’s provided lookup)

You can also specify a custom policy name. Use the pundit_policy_name: option, for example:

A pundit policy:
class TotalBalancePolicy
 def initialize(user, obj)
 # ...
 end
 def admin?
 # ...
 end
end

field :balance, AccountBalanceType, authorize: { role: :admin, pundit_policy_name: "TotalBalancePolicy" }

The permission is defined as a hash with a role: key and pundit_policy_name: key. You can pass a hash for view: and access: too. For parent_role:, you can specify a name with parent_pundit_policy_name:.

For :pundit, methods will be called with an extra ?, so

view: :viewer
=> will call the policy's `#viewer?` method

Policy Namespace

If you put your policies in a namespace, provide that namespace as authorize(..., namespace:), for example:

authorize(:pundit, namespace: Policies)

Now, policies will be looked up by name inside Policies::, for example:

AccountType = GraphQL::ObjectType.define do
 name "Account"
 access :admin # will use Policies::AccountPolicy#admin?
 # ...
end

Policy Scopes

When a resolve function returns an ActiveRecord::Relation, the policy’s Scope class [https://github.com/elabs/pundit#scopes] will be used if it’s available.

See Scoping for details.

CanCan

NOTE: A new {% internal_link “CanCan integration”, “/authorization/can_can_integration” %} is available. It leverages GraphQL-Ruby’s new {% internal_link “built-in auth”, “/authorization/overview” %} system and has better support for inheritance and customization. If possible, use that one instead!

GraphQL::Pro includes built-in support for CanCan [https://github.com/CanCanCommunity/cancancan]:

MySchema = GraphQL::Schema.define do
 authorization(:cancan)
end

GraphQL will initialize your Ability class at the beginning of the query and pass permissions to the #can? method.

field :phone_number, PhoneNumberType, authorize: :view
=> calls `can?(:view, phone_number)`

For compile-time checks (view and access), the object is always nil.

field :social_security_number, types.String, view: :admin
=> calls `can?(:admin, nil)`

accessible_by

When a resolve function returns an ActiveRecord::Relation, the relation’s accessible_by method [https://github.com/CanCanCommunity/cancancan/wiki/Fetching-Records] will be used to scope the relation.

See Scoping for details.

Custom Ability Class

By default, GraphQL looks for a top-level Ability class. You can specify a different class with the ability_class: option. For example:

MySchema = GraphQL::Schema.define do
 authorization(:cancan, ability_class: Permissions::CustomAbility)
end

Now, GraphQL will use Permissions::CustomAbility#can? to determine permissions.

Custom Authorization Strategy

You can provide custom authorization logic by providing a class:

MySchema = GraphQL::Schema.define do
 # Custom authorization strategy class:
 authorization(MyAuthStrategy)
end

A custom strategy class must implement #initialize(ctx) and #allowed?(gate, object). Optionally, it may implement #scope(gate, relation). For example:

class MyAuthStrategy
 def initialize(ctx)
 @user = ctx[:custom_user]
 end

 def allowed?(gate, object)
 if object.nil?
 # This is a compile-time check,
 # so no object is available:
 if gate.role == :admin
 @user.admin?
 else
 @user.viewer?
 end
 else
 # This is a runtime check,
 # so we can use this specific object
 @user.can?(gate.role, object)
 end
 end

 def scope(gate, relation)
 # Filter an ActiveRecord::Relation
 # according to `@user` and `gate`
 # ...
 end
end

gate is the permission setting which responds to:

	#level: where this check occurs: :authorize, :view or :access

	#role: the value given to authorize, view or access

	#owner: the field or type which has this permission check

object is either:

	nil, if the current check is :view or :access

	The runtime object, if the current check is authorize

For list types, each item of the list is authorized individually.

Scoping

Database query objects (ActiveRecord::Relations and Mongoid::Criterias) get special treatment. They get passed to scope handlers so that they can be filtered at database level (eg, SQL WHERE) instead of Ruby level (eg, .select).

ActiveRecord::Relations can be scoped with SQL by authorization strategies. The Pundit integration uses policy scopes and the CanCan integration uses accessible_by. Custom authorization strategies can implement #scope(gate, relation) to apply scoping to ActiveRecord::Relations.

Mongoid::Criterias are supported in the same way by Pundit policy scopes) and custom strategy’s #scope(gate, relation) methods, but they aren’t supported by CanCan (which doesn’t support Mongoid, as far as I can tell!).

layout: guide
doc_stub: false
search: true
section: GraphQL Pro
title: Stable Cursors for ActiveRecord
desc: Value-based cursors for stable pagination over ActiveRecord::Relations
index: 5
pro: true

GraphQL::Pro includes a mechanism for serving stable cursors for ActiveRecord::Relations based on column values. If objects are created or destroyed during pagination, the list of items won’t be disrupted.

A new RelationConnection is applied by default. It is backwards-compatible with existing offset-based cursors. See “Opting Out” below if you wish to continue using offset-based pagination.

To enforce the opacity of your cursors, consider an {% internal_link “encrypted encoder”,”/pro/encoders” %}.

What’s the difference?

The default RelationConnection (which turns an ActiveRecord::Relation into a Relay-compatible connection) uses offset as a cursor. This naive approach is sufficient for many cases, but it’s subject to a specific set of bugs.

Let’s say you’re looking at the second page of 10 items (LIMIT 10 OFFSET 10). During that time, one of the items on page 1 is deleted. When you navigate to page 3 (LIMIT 10 OFFSET 20), you’ll actually miss one item. The entire list shifted “up” one position when a previous item was deleted.

To solve this bug, we should use a value to page through items (instead of offset). For example, if items are ordered by id, use the id for pagination:

LIMIT 10 -- page 1
WHERE id > :last_id LIMIT 10 -- page 2

This way, even when items are added or removed, pagination will continue without interruption.

For more information about this issue, see “Pagination: You’re (Probably) Doing It Wrong” [https://coderwall.com/p/lkcaag/pagination-you-re-probably-doing-it-wrong].

Implementation Notes

Keep these points in mind when using value-based cursors:

	For a given ActiveRecord::Relation, only columns of that specific model can be used in pagination. (This is because column names are turned into WHERE conditions.)

	RelationConnection may add an additional primary_key ordering to ensure that the cursor value is unique. This behavior is inspired by Relation#reverse_order which also assumes that primary_key is the default sort.

Grouped Relations

When using a grouped ActiveRecord::Relation, include a unique ID in your sort to ensure that each row in the result has a unique cursor. For example:

Bad: If two results have the same `max(price)`,
they will be identical from a pagination perspective:
Products.select("max(price) as price").group("category_id").order("price")

Good: `category_id` is used to disambiguate any results with the same price:
Products.select("max(price) as price").group("category_id").order("price, category_id")

For ungrouped relations, this issue is handled automatically by adding the model’s primary_key to the order values.

If you provide an unordered, grouped relation, GraphQL::Pro::RelationConnection::InvalidRelationError will be raised because an unordered relation cannot be paginated in a stable way.

Backwards Compatibility

GraphQL::Pro’s RelationConnection is backwards-compatible. If it receives an offset-based cursor, it uses that cursor for the next resolution, then returns value-based cursors in the next result.

If you’re also switching to {% internal_link “encrypted cursors”,”/pro/encoders” %}, you’ll need a {% internal_link “versioned encoder”,”/pro/encoders#versioning” %}, too. This way, both unencrypted and encrypted cursors will be accepted! For example:

Define an encrypted encoder for use with cursors:
EncryptedCursorEncoder = MyEncoder = GraphQL::Pro::Encoder.define do
 key("f411f30495fe688cb349d...")
end

Make a versioned encoder combining new & old
VersionedCursorEncoder = GraphQL::Pro::Encoder.versioned(
 # New encrypted encoder:
 EncryptedCursorEncoder
 # Old plaintext encoder (this is the default):
 GraphQL::Schema::Base64Encoder
)

MySchema = GraphQL::Schema.define do
 # Apply the versioned encoder:
 cursor_encoder(VersionedCursorEncoder)
end

Now, both unencrypted and encrypted cursors will be accepted.

Opting Out

If you don’t want GraphQL::Pro’s new cursor behavior, re-register the offset-based RelationConnection:

MySchema = GraphQL::Schema.define { ... }
Always use the offset-based connection, override `GraphQL::Pro::RelationConnection`
GraphQL::Relay::BaseConnection.register_connection_implementation(
 ActiveRecord::Relation, GraphQL::Relay::RelationConnection
)

ActiveRecord Versions

GraphQL::Pro::RelationConnection supports ActiveRecord >= 4.1.0.

layout: guide
doc_stub: false
search: true
section: GraphQL Pro
title: Dashboard
desc: Installing GraphQL-Pro’s Dashboard
index: 4
pro: true

GraphQL-Pro [http://graphql-pro] includes a web dashboard for monitoring {% internal_link “Operation Store”, “/operation_store/overview” %} and {% internal_link “subscriptions”, “/subscriptions/pusher_implementation” %}.

Installation

To hook up the Dashboard, add it to routes.rb

config/routes.rb

Include GraphQL::Pro's routing extensions:
using GraphQL::Pro::Routes

Rails.application.routes.draw do
 # ...
 # Add the GraphQL::Pro Dashboard
 # TODO: authorize, see below
 mount MySchema.dashboard, at: "/graphql/dashboard"
end

With this configuration, it will be available at /graphql/dashboard.

The dashboard is a Rack app, so you can mount it in Sinatra or any other Rack app.

Authorizing the Dashboard

You should only allow admin users to see /graphql/dashboard because it allows viewers to delete stored operations.

Rails Routing Constraints

Use Rails routing constraints [http://api.rubyonrails.org/v5.1/classes/ActionDispatch/Routing/Mapper/Scoping.html#method-i-constraints] to restrict access to authorized users, for example:

Check the secure session for a staff flag:
STAFF_ONLY = ->(request) { request.session["staff"] == true }
Only serve the GraphQL Dashboard to staff users:
constraints(STAFF_ONLY) do
 mount MySchema.dashboard, at: "/graphql/dashboard"
end

Rack Basic Authentication

Insert the Rack::Auth::Basic middleware, before the web view. This prompts for a username and password when visiting the dashboard.

graphql_dashboard = Rack::Builder.new do
 use(Rack::Auth::Basic) do |username, password|
 username == ENV.fetch("GRAPHQL_USERNAME") && password == ENV.fetch("GRAPHQL_PASSWORD")
 end

 run MySchema.dashboard
end
mount graphql_dashboard, at: "/graphql/dashboard"

layout: guide
doc_stub: false
search: true
section: GraphQL Pro
title: Encrypted, Versioned Cursors and IDs
desc: Increased opacity and configurability for Relay identifiers
index: 6
pro: true

GraphQL::Pro includes a mechanism for serving encrypted, versioned cursors and IDs. This provides some benefits:

	Users can’t reverse-engineer node IDs or connection cursors, removing a possible attack vector.

	You can gradually transition between cursor strategies, adding encrypting while supporting any “stale” encoders which clients already have.

GraphQL::Pro’s encrypted encoders provide a few security features:

	Key-based encryption by aes-128-gcm by default

	Authentication

	Nonces for cursors (but not IDs, that would be silly)

Defining an Encoder

Encoders can be created with Encoder.define { ... }:

MyEncoder = GraphQL::Pro::Encoder.define do
 key("f411f30495fe688cb349d...")
 # optional:
 tag("81ce51c307")
end

	key is the encryption key for this encoder. You can generate one with: require "securerandom"; SecureRandom.random_bytes(64)

	tag, if provided, is used as authentication data or for disambiguating versioned encoders

Encrypting Cursors

Encrypt cursors by attaching an encrypted encoder to Schema#cursor_encoder:

MySchema = GraphQL::Schema.define do
 cursor_encoder(MyCursorEncoder)
end

Now, built-in connection implementations will use that encoder for cursors.

If you implement your own connections, you can access the encoder’s encryption methods via {{ “GraphQL::Relay::BaseConnection#encode” | api_doc }} and {{ “GraphQL::Relay::BaseConnection#decode” | api_doc }}.

Encrypting IDs

Encrypt IDs by using encoders in Schema#id_from_object and Schema#object_from_id:

MySchema = GraphQL::Schema.define do
 id_from_object ->(object, type, ctx) {
 id_data = "#{object.class.name}/#{object.id}"
 MyIDEncoder.encode(id_data)
 }

 object_from_id ->(id, ctx) {
 id_data = MyIDEncoder.decode(id)
 class_name, id = id_data.split("/")
 class_name.constantize.find(id)
 }
end

Note that IDs are not encrypted with nonces. This means that if someone can guess how IDs are constructed, they can determine the encryption key (a kind of known-plaintext attack [https://en.wikipedia.org/wiki/Known-plaintext_attack]). To reduce this risk, make your plaintext IDs unpredictable, for example, by appending a salt or obfuscating their content.

Versioning

You can combine several encoders into a single chain of versioned encoders. Pass them to .versioned, newest-to-oldest:

Define some encoders ...
NewSecureEncoder = GraphQL::Pro::Encoder.define { ... }
OldSecureEncoder = GraphQL::Pro::Encoder.define { ... }
LegacyInsecureEncoder = GraphQL::Pro::Encoder.define { ... }

Then order them by priority:
VersionedEncoder = GraphQL::Pro::Encoder.versioned(
 # Newest:
 NewSecureEncoder,
 OldSecureEncoder,
 # Oldest:
 LegacyInsecureEncoder
)

When receiving an ID or cursor, a versioned encoders tries each encoder in sequence. When creating a new ID or cursor, the encoder always uses the first encoder. This way, clients will receiving new encoders, but the server will still accept old encoders (until the old one is removed from the list).

VersionedEncoder#decode_versioned returns two values: the decoded data and the encoder which successfully decoded it. You can use this to determine how to process decoded data. For example, you can switch on the encoder:

data, encoder = VersionedEncoder.decode_versioned(id)
case encoder
when UUIDEncoder
 find_by_uuid(data)
when SQLPrimaryKeyEncoder
 find_by_pk(data)
when nil
 # `id` could not be decoded
 nil
end

Encoding

By default, encrypted bytes is stringified as base-64. You can specific a custom encoder with the Encoder#encoder definition. For example, you could define an encode which uses URL-safe base-64 functions:

module URLSafeEncoder
 def self.encode(str)
 Base64.urlsafe_encode64(str)
 end

 def self.decode(str)
 Base64.urlsafe_decode64(str)
 end
end

Then attach it to your encoder:

MyURLSafeEncoder = GraphQL::Pro::Encoder.define do
 encoder URLSafeEncoder
end

Now, these node IDs and cursors will be URL-safe!

layout: guide
doc_stub: false
outbound_url: http://graphql.pro
title: GraphQL::Pro Home
section: GraphQL Pro
desc: Overview of GraphQL::Pro features
index: 0
pro: true

layout: guide
doc_stub: false
search: true
section: GraphQL Pro
title: Installation
desc: Get started with GraphQL::Pro
index: 1
pro: true

GraphQL::Pro is distributed as a Ruby gem. When you buy GraphQL::Pro, you’ll receive credentials, which you can register with bundler:

bundle config gems.graphql.pro #{YOUR_CREDENTIALS}

Then, you can add graphql-pro to your Gemfile, which a custom source:

source "https://gems.graphql.pro" do
 gem "graphql-pro"
end

Then, install the gem with Bundler:

bundle install

Then, check out some of GraphQL::Pro’s features!

Updates

To update GraphQL::Pro, use Bundler:

bundle update graphql-pro

Be sure to check the changelog [https://github.com/rmosolgo/graphql-ruby/blob/master/CHANGELOG-pro.md] between versions!

Dependencies

graphql-pro 1.0.0 requires graphql ~>1.4. The latest version requires graphql =>1.7.6.

Verifying Integrity

You can verify the integrity of graphql-pro by getting its checksum and comparing it to the published checksums [https://github.com/rmosolgo/graphql-ruby/blob/master/guides/pro/checksums].

Include the graphql:pro:validate task in your Rakefile:

Rakefile
require "graphql/rake_task/validate"

Then invoke it with a version:

$ bundle exec rake graphql:pro:validate[1.0.0]
Validating graphql-pro v1.0.0
 - Checking for graphql-pro credentials...
 ✓ found
 - Fetching the gem...
 ✓ fetched
 - Validating digest...
 ✓ validated from GitHub
 ✓ validated from graphql-ruby.org
✔ graphql-pro 1.0.0 validated successfully!

In case of a failure, please {% open_an_issue “GraphQL Pro installation failure” %}:

Validating graphql-pro v1.4.800
 - Checking for graphql-pro credentials...
 ✓ found
 - Fetching the gem...
 ✓ fetched
 - Validating digest...
 ✘ SHA mismatch:
 Downloaded: c9cab2619aa6540605ce7922784fc84dbba3623383fdce6b17fde01d8da0aff49d666810c97f66310013c030e3ab7712094ee2d8f1ea9ce79aaf65c1684d992a
 GitHub: 404: Not Found
 graphql-ruby.org: 404: Not Found

 This download of graphql-pro is invalid, please open an issue:
 https://github.com/rmosolgo/graphql-ruby/issues/new?title=graphql-pro%20digest%20mismatch%20(1.4.800)

layout: guide
doc_stub: false
search: true
section: Queries
title: Ahead-of-Time Analysis
desc: Check incoming query strings and reject them if they don’t pass your checks
index: 1

You can provide logic for validating incoming queries and rejecting them if they don’t pass. Query analyzers inspect the query and may return {{ “GraphQL::AnalysisError” | api_doc }} to halt execution.

GraphQL’s max_depth and max_complexity are implemented with query analyzers, you can see those for reference:

	{{ “GraphQL::Analysis::QueryDepth” | api_doc }}

	{{ “GraphQL::Analysis::QueryComplexity” | api_doc }}

Analyzer API

A query analyzer visits each field in the query before the query is executed. It can accumulate data during the visits, then return a value. If the returned value is a {{ “GraphQL::AnalysisError” | api_doc }} (or an array of those errors), the query won’t be executed and the error will be returned to the user. You can use this feature to assert that queries are permitted before running them!

Query analyzers reuse concepts from Array#reduce, so let’s briefly revisit how that method works:

items = [1, 2, 3, 4, 5]
initial_value = 0
reduce_result = items.reduce(initial_value) { |memo, item| memo + item }
final_value = "Sum: #{reduce_result}"
puts final_value
Sum: 15

	reduce accepts an initial value and a callback (as a block)

	The callback receives the reduce state (memo) and each item of the array (item)

	For each call to the callback, the return value is the new state and it will be provided to the next call to the callback

	When each item has been visited, the last value of the callback state (the last memo value) is returned

	Then, you can use the reduced value in your application

A query analyzer has the same basic parts. Here’s the scaffold for an analyzer:

class MyQueryAnalyzer
 # Called before initializing the analyzer.
 # Returns true to run this analyzer, or false to skip it.
 def analyze?(query)
 end

 # Called before the visit.
 # Returns the initial value for `memo`
 def initial_value(query)
 end

 # This is like the `reduce` callback.
 # The return value is passed to the next call as `memo`
 def call(memo, visit_type, irep_node)
 end

 # Called when we're done the whole visit.
 # The return value may be a GraphQL::AnalysisError (or an array of them).
 # Or, you can use this hook to write to a log, etc
 def final_value(memo)
 end
end

	#analyze? is called before initializing any analyzer if it is defined. When #analyze? returns false, the analyzer won’t be ran.

	#initial_value is a chance to initialize the state for your analysis. For example, you can return a hash with keys for the query, schema, and any other values you want to store.

	#call is called for each node in the query. memo is the analyzer state. visit_type is either :enter or :leave. irep_node is the {{ “GraphQL::InternalRepresentation::Node” | api_doc }} for the current field in the query. (It is like item in the Array#reduce callback.)

	#final_value is called after the visit. It provides a chance to write to your log or return a {{ “GraphQL::AnalysisError” | api_doc }} to halt query execution.

Query analyzers are added to the schema with query_analyzer, for example:

class MySchema < GraphQL::Schema
 query_analyzer MyQueryAnalyzer.new
end

title: Backtrace Annotations
layout: guide
doc_stub: false
search: true
section: Queries
desc: Use the GraphQL backtrace for debugging
index: 12
experimental: true

context objects have a backtrace which shows its GraphQL context. You can print the backtrace during query execution:

puts context.backtrace
Loc | Field | Object | Arguments | Result
3:13 | User.login | #<User id=1> | {"message"=>"Boom"} | #<RuntimeError: This is broken: Boom>
2:11 | Query.user | nil | {"login"=>"rmosolgo"} | {}
1:9 | query | nil | {"msg"=>"Boom"} |

The backtrace contains some execution data:

	Loc is the line:column of the field in the query string

	Field is the TypeName.fieldName of the fields in the backtrace

	Object is the obj for query resolution (used for resolving the given field), equivalent to obj.inspect

	Arguments are the GraphQL arguments for field resolution (including any default values and variable values)

	Result is the GraphQL-ready result which is being constructed (it may be incomplete if the query is still in-progress)

Wrapping Errors

You can wrap unhandled errors with a GraphQL error with GraphQL::Backtrace.

To enable this feature for a query, add backtrace: true to your context, for example:

Wrap this query with backtrace annotation
MySchema.execute(query_string, context: { backtrace: true })

Or, to always wrap backtraces, add it to your schema definition with use, for example:

class MySchema < GraphQL::Schema
 # Always wrap backtraces with GraphQL annotation
 use GraphQL::Backtrace
end

Now, any unhandled errors will be wrapped by GraphQL::Backtrace::TracedError, which prints out the GraphQL backtrace, too. For example:

Unhandled error during GraphQL execution:

 This is broken: Boom
 /Users/rmosolgo/code/graphql-ruby/spec/graphql/backtrace_spec.rb:27:in `block (3 levels) in <top (required)>'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/schema/build_from_definition/resolve_map.rb:57:in `call'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/schema/build_from_definition.rb:171:in `block in build_object_type'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/schema/build_from_definition.rb:280:in `block (2 levels) in build_fields'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/field.rb:228:in `resolve'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/execution/execute.rb:253:in `call'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/schema/middleware_chain.rb:45:in `invoke_core'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/schema/middleware_chain.rb:38:in `invoke'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/execution/execute.rb:107:in `resolve_field'
 /Users/rmosolgo/code/graphql-ruby/lib/graphql/execution/execute.rb:71:in `block (2 levels) in resolve_selection'
 ... and 65 more lines

Use #cause to access the original exception (including #cause.backtrace).

GraphQL Backtrace:
Loc | Field | Object | Arguments | Result
3:13 | Thing.raiseField as boomError | :something | {"message"=>"Boom"} | #<RuntimeError: This is broken: Boom>
2:11 | Query.field1 | "Root" | {} | {}
1:9 | query | "Root" | {"msg"=>"Boom"} | {}

title: Complexity & Depth
layout: guide
doc_stub: false
search: true
section: Queries
desc: Limiting query depth and field selections
index: 4

Prevent complex queries

Fields have a “complexity” value which can be configured in their definition. It can be a constant (numeric) value, or a proc. It can be defined as a keyword or inside the configuration block. For example:

Constant complexity:
field :top_score, Integer, null: false, complexity: 10

Dynamic complexity:
field :top_scorers, [PlayerType], null: false do
 argument :limit, Integer, limit: false, default_value: 5
 complexity ->(ctx, args, child_complexity) {
 if ctx[:current_user].staff?
 # no limit for staff users
 0
 else
 # `child_complexity` is the value for selections
 # which were made on the items of this list.
 #
 # We don't know how many items will be fetched because
 # we haven't run the query yet, but we can estimate by
 # using the `limit` argument which we defined above.
 args[:limit] * child_complexity
 end
 }
end

Then, define your max_complexity at the schema-level:

class MySchema < GraphQL::Schema
 # ...
 max_complexity 100
end

Or, at the query-level, which overrides the schema-level setting:

MySchema.execute(query_string, max_complexity: 100)

Using nil will disable the validation:

😧 Anything goes!
MySchema.execute(query_string, max_complexity: nil)

To get a feeling for complexity of queries in your system, you can use the QueryComplexity query reducer. Hook it up to log out values from each query:

class MySchema < GraphQL::Schema
 log_query_complexity = GraphQL::Analysis::QueryComplexity.new { |query, complexity| Rails.logger.info("[GraphQL Query Complexity] #{complexity} | staff? #{query.context[:current_user].staff?}")}
 query_analyzer(log_query_complexity)
end

Prevent deeply-nested queries

You can also reject queries based on the depth of their nesting. You can define max_depth at schema-level or query-level:

Schema-level:
class MySchema < GraphQL::Schema
 # ...
 max_depth 10
end

Query-level, which overrides the schema-level setting:
MySchema.execute(query_string, max_depth: 10)

You can use nil to disable the validation:

This query won't be validated:
MySchema.execute(query_string, max_depth: nil)

To get a feeling for depth of queries in your system, you can use the QueryDepth query reducer. Hook it up to log out values from each query:

class MySchema < GraphQL::Schema
 log_query_depth = GraphQL::Analysis::QueryDepth.new { |query, depth| Rails.logger.info("[GraphQL Query Depth] #{depth} || staff? #{query.context[:current_user].staff?}")}
 query_analyzer(log_query_depth)
end

layout: guide
doc_stub: false
search: true
section: Queries
title: Executing Queries
desc: Evaluate GraphQL queries with your schema
index: 0

You can execute queries with your {{ “GraphQL::Schema” | api_doc }} and get a Ruby Hash as a result. For example, to execute a query from a string:

query_string = "{ ... }"
MySchema.execute(query_string)
{
"data" => { ... }
}

Or, you can execute multiple queries at once:

MySchema.multiplex([
 {query: query_string_1},
 {query: query_string_2},
 {query: query_string_3},
])
[
{ "data" => { ... } },
{ "data" => { ... } },
{ "data" => { ... } },
]

There are also several options you can use:

	variables: provides values for $-named query variables [http://graphql.org/learn/queries/#variables]

	context: accepts application-specific data to pass to resolve functions

	root_value: will be provided to root-level resolve functions as obj

	operation_name: picks a named operation [http://graphql.org/learn/queries/#operation-name] from the incoming string to execute

	document: accepts an already-parsed query (instead of a string), see {{ “GraphQL.parse” | api_doc }}

	validate: may be false to skip static validation for this query

	max_depth: and max_complexity: may override schema-level values

Some of these options are described in more detail below, see {{ “GraphQL::Query#initialize” | api_doc }} for more information.

Variables

GraphQL provides query variables [http://graphql.org/learn/queries/#variables] as a way to parameterize query strings. If your query string contains variables, you can provide values in a hash of { String => value } pairs. The keys should not contain "$".

For example, to provide variables to a query:

query_string = "
 query getPost($postId: ID!) {
 post(id: $postId) {
 title
 }
 }"

variables = { "postId" => "1" }

MySchema.execute(query_string, variables: variables)

If the variable is a {{ “GraphQL::InputObjectType” | api_doc }}, you can provide a nested hash, for example:

query_string = "
mutation createPost($postParams: PostInput!, $createdById: ID!){
 createPost(params: $postParams, createdById: $createdById) {
 id
 title
 createdBy { name }
 }
}
"

variables = {
 "postParams" => {
 "title" => "...",
 "body" => "..."
 },
 "createdById" => "5",
}

MySchema.execute(query_string, variables: variables)

Context

You can provide application-specific values to GraphQL as context:. This is available in many places:

	resolve functions

	Schema#resolve_type hook

	ID generation & fetching

Common uses for context: include the current user or auth token. To provide a context: value, pass a hash to Schema#execute:

context = {
 current_user: session[:current_user],
 current_organization: session[:current_organization],
}

MySchema.execute(query_string, context: context)

Then, you can access those values during execution:

field :post, Post, null: true do
 argument :id, ID, required: true
end

def post(id:)
 context[:current_user] # => #<User id=123 ... >
 # ...
end

Note that context is not the hash that you passed it. It’s an instance of {{ “GraphQL::Query::Context” | api_doc }}, but it delegates #[], #[]=, and a few other methods to the hash you provide.

Root Value

You can provide a root object value with root_value:. For example, to base the query off of the current organization:

current_org = session[:current_organization]
MySchema.execute(query_string, root_value: current_org)

That value will be provided to root-level fields, such as mutation fields. For example:

class MutationType < GraphQL::Schema::Object
 field :create_post, Post, null: true

 def create_post(**args)
 object # => #<Organization id=456 ...>
 # ...
 end
end

{{ “GraphQL::Relay::Mutation” | api_doc }} fields will also receive root_value: as obj (assuming they’re attached directly to your MutationType).

title: Instrumentation
layout: guide
doc_stub: false
search: true
section: Queries
desc: Wrap query execution with custom logic

You can call hooks before and after each query. Query instrumentation can be attached during schema definition:

class MySchema < GraphQL::Schema
 instrument(:query, QueryTimerInstrumentation)
end

The instrumenter must implement #before_query(query) and #after_query(query). The return values of these methods are not used. They receive the {{ “GraphQL::Query” | api_doc }} instance.

module QueryTimerInstrumentation
 module_function

 # Log the time of the query
 def before_query(query)
 Rails.logger.info("Query begin: #{Time.now.to_i}")
 end

 def after_query(query)
 Rails.logger.info("Query end: #{Time.now.to_i}")
 end
end

title: Multiplex
layout: guide
doc_stub: false
search: true
section: Queries
desc: Run multiple queries concurrently
index: 10

Some clients may send several queries to the server at once (for example, Apollo Client’s query batching [http://dev.apollodata.com/core/network.html#query-batching]). You can execute them concurrently with {{ “Schema#multiplex” | api_doc }}.

Multiplex runs have their own context, analyzers and instrumentation.

Concurrent Execution

To run queries concurrently, build an array of query options, using query: for the query string. For example:

Prepare the context for each query:
context = {
 current_user: current_user,
}

Prepare the query options:
queries = [
 {
 query: "query Query1 { someField }",
 variables: {},
 operation_name: 'Query1',
 context: context,
 },
 {
 query: "query Query2 ($num: Int){ plusOne(num: $num) }",
 variables: { num: 3 },
 operation_name: 'Query2',
 context: context,
 }
]

Then, pass them to Schema#multiplex:

results = MySchema.multiplex(queries)

results will contain the result for each query in queries.

Apollo Query Batching

Apollo sends the batch variables in a _json param, you also need to ensure that your schema can handle both batched and non-batched queries, below is an example of the default GraphqlController rewritten to handle Apollo batches:

def execute
 context = {}

 # Apollo sends the params in a _json variable when batching is enabled
 # see the Apollo Documentation about query batching: http://dev.apollodata.com/core/network.html#query-batching
 result = if params[:_json]
 queries = params[:_json].map do |param|
 {
 query: param[:query],
 operation_name: param[:operationName],
 variables: ensure_hash(param[:variables]),
 context: context
 }
 end
 MySchema.multiplex(queries)
 else
 MySchema.execute(
 params[:query],
 operation_name: params[:operationName],
 variables: ensure_hash(params[:variables]),
 context: context
)
 end

 render json: result
end

Validation and Error Handling

Each query is validated and {% internal_link “analyzed”,”/queries/analysis” %} independently. The results array may include a mix of successful results and failed results

Multiplex-Level Context

You can add values to {{ “Execution::Multiplex#context” | api_doc }} by providing a context: hash:

MySchema.multiplex(queries, context: { current_user: current_user })

This will be available to instrumentation as multiplex.context[:current_user] (see below).

Multiplex-Level Analysis

You can analyze all queries in a multiplex by adding a multiplex analyzer. For example:

class MySchema < GraphQL::Schema do
 # ...
 multiplex_analyzer(MyAnalyzer)
end

The API is the same as {% internal_link “query analyzers”,”/queries/analysis” %}, with some considerations:

	initial_value is called at the start of the multiplex (not query)

	final is called at the end of the multiplex (not query)

	call(...) is called for each node in each query, so it will visit every node in the multiplex in sequence.

Multiplex analyzers may return {{ “AnalysisError” | api_doc }} to halt execution of the whole multiplex.

Multiplex Instrumentation

You can add hooks for each multiplex run with multiplex instrumentation.

An instrumenter must implement .before_multiplex(multiplex) and .after_multiplex(multiplex). Then, it can be mounted with instrument(:multiplex, MyMultiplexAnalyzer). See {{ “Execution::Multiplex” | api_doc }} for available methods.

For example:

Count how many queries are in the multiplex run:
module MultiplexCounter
 def self.before_multiplex(multiplex)
 Rails.logger.info("Multiplex size: #{multiplex.queries.length}")
 end

 def self.after_multiplex(multiplex)
 end
end

...

class MySchema < GraphQL::Schema
 # ...
 instrument(:multiplex, MultiplexCounter)
end

Now, MultiplexCounter.before_multiplex will be called before each multiplex and .after_multiplex will run after each multiplex.

layout: guide
doc_stub: false
search: true
section: Queries
title: Phases of Execution
desc: The steps GraphQL takes to run your query
index: 2

When GraphQL receives a query string, it goes through these steps:

	Tokenize: {{ “GraphQL::Language::Lexer” | api_doc }} splits the string into a stream of tokens

	Parse: {{ “GraphQL::Language::Parser” | api_doc }} builds an abstract syntax tree (AST) out of the stream of tokens

	Validate: {{ “GraphQL::StaticValidation::Validator” | api_doc }} validates the incoming AST as a valid query for the schema

	Rewrite: {{ “GraphQL::InternalRepresentation::Rewrite” | api_doc }} builds a tree of {{ “GraphQL::InternalRepresentation::Node” | api_doc }}s which express the query in a simpler way than the AST

	Analyze: If there are any query analyzers, they are run with {{ “GraphQL::Analysis.analyze_query” | api_doc }}

	Execute: The query is traversed, resolve functions are called and the response is built

	Respond: The response is returned as a Hash

title: Timeout
layout: guide
doc_stub: false
search: true
section: Queries
desc: Cutting off GraphQL execution
index: 5

You can apply a timeout to query execution with TimeoutMiddleware. For example:

class MySchema < GraphQL::Schema
 middleware(GraphQL::Schema::TimeoutMiddleware.new(max_seconds: 2))
end

After max_seconds, no new fields will be resolved. Instead, errors will be added to the errors key for fields that weren’t resolved.

Note that this does not interrupt field execution (doing so is buggy [http://www.mikeperham.com/2015/05/08/timeout-rubys-most-dangerous-api/]). If you’re making external calls (eg, HTTP requests or database queries), make sure to use a library-specific timeout for that operation (eg, Redis timeout [https://github.com/redis/redis-rb#timeouts], Net::HTTP [https://ruby-doc.org/stdlib-2.4.1/libdoc/net/http/rdoc/Net/HTTP.html]’s ssl_timeout, open_timeout, and read_timeout).

To log the error, pass a block to the middleware:

class MySchema < GraphQL::Schema
 middleware(GraphQL::Schema::TimeoutMiddleware.new(max_seconds: 2) do |err, query|
 Rails.logger.info("GraphQL Timeout: #{query.query_string}")
 end)
end

title: Tracing
layout: guide
doc_stub: false
search: true
section: Queries
desc: Observation hooks for execution
index: 11
experimental: true

{{ “GraphQL::Tracing” | api_doc }} provides a .trace hook to observe events from the GraphQL runtime.

A tracer must implement .trace, for example:

class MyCustomTracer
 def self.trace(key, data)
 # do stuff with key & data
 yield
 end
end

.trace is called with:

	key: the event happening in the runtime

	data: a hash of metadata about the event

	&block: the event itself, it must be yielded and the value must be returned

To run a tracer for every query, add it to the schema with tracer:

Run `MyCustomTracer` for all queries
class MySchema < GraphQL::Schema
 tracer(MyCustomTracer)
end

Or, to run a tracer for one query only, add it to context: as tracers: [...], for example:

Run `MyCustomTracer` for this query
MySchema.execute(..., context: { tracers: [MyCustomTracer]})

For a full list of events, see the {{ “GraphQL::Tracing” | api_doc }} API docs.

ActiveSupport::Notifications

You can emit events to ActiveSupport::Notifications with an experimental tracer, ActiveSupportNotificationsTracing.

To enable it, install the tracer:

Send execution events to ActiveSupport::Notifications
class MySchema < GraphQL::Schema
 tracer GraphQL::Tracing::ActiveSupportNotificationsTracing
end

Monitoring

Several monitoring platforms are supported out-of-the box by GraphQL-Ruby (see platforms below).

Leaf fields are not monitored (to avoid high cardinality in the metrics service).

Implementations are based on {{ “Tracing::PlatformTracing” | api_doc }}.

Appsignal

To add AppSignal [https://appsignal.com/] instrumentation:

class MySchema < GraphQL::Schema
 use(GraphQL::Tracing::AppsignalTracing)
end

 {{ "/queries/appsignal_example.png" | link_to_img:"appsignal monitoring" }}

New Relic

To add New Relic [https://newrelic.com/] instrumentation:

class MySchema < GraphQL::Schema
 use(GraphQL::Tracing::NewRelicTracing)
 # Optional, use the operation name to set the new relic transaction name:
 # use GraphQL::Tracing::NewRelicTracing, set_transaction_name: true
end

 {{ "/queries/new_relic_example.png" | link_to_img:"new relic monitoring" }}

Scout

To add Scout APM [https://scoutapp.com/] instrumentation:

class MySchema < GraphQL::Schema
 use(GraphQL::Tracing::ScoutTracing)
end

 {{ "/queries/scout_example.png" | link_to_img:"scout monitoring" }}

Skylight

To add Skylight [http://skylight.io] instrumentation:

class MySchema < GraphQL::Schema
 use(GraphQL::Tracing::SkylightTracing)
end

 {{ "/queries/skylight_example.png" | link_to_img:"skylight monitoring" }}

Datadog

To add Datadog [https://www.datadoghq.com] instrumentation:

class MySchema < GraphQL::Schema
 use(GraphQL::Tracing::DataDogTracing)
end

Prometheus

To add Prometheus [https://prometheus.io] instrumentation:

require 'prometheus_exporter/client'

class MySchema < GraphQL::Schema
 use(GraphQL::Tracing::PrometheusTracing)
end

The PrometheusExporter server must be run with a custom type collector that extends
GraphQL::Tracing::PrometheusTracing::GraphQLCollector:

lib/graphql_collector.rb

require 'graphql/tracing'

class GraphQLCollector < GraphQL::Tracing::PrometheusTracing::GraphQLCollector
end

bundle exec prometheus_exporter -a lib/graphql_collector.rb

layout: guide
doc_stub: false
search: true
title: Connections
section: Relay
desc: Build and customize Relay-style connection types
index: 1

Relay expresses one-to-many relationships with connections [https://facebook.github.io/relay/graphql/connections.htm]. Connections support pagination, filtering and metadata in a robust way.

graphql-ruby includes built-in connection support for Array, ActiveRecord::Relations, Sequel::Datasets, and Mongoid::Criterias. You can define custom connection classes to expose other collections with GraphQL.

Connection fields

To define a connection field, use the field method. For a return type, get a type’s .connection_type. The field’s method or resolver: should return a collection (eg, Array or ActiveRecord::Relation) without pagination. (The connection will paginate the collection).

For example:

class PostType < GraphQL::Schema::Object
 # `Post#comments` returns an ActiveRecord::Relation
 # The GraphQL field returns a Connection
 field :comments, CommentType.connection_type, null: false
 # `Post#similar_posts` returns an Array
 field :similar_posts, PostType.connection_type, null: false

 # ...
end

(GraphQL-Ruby applies connection logic because the return type’s name ends in Connection. You can manually override this with connection: true or connection: false.)

You can also define custom arguments and a custom resolve function for connections, just like other fields:

field :featured_comments, CommentType.connection_type do
 # Add an argument:
 argument :since, String, required: false
end

def featured_comments(since: nil)
 comments = post.comments.featured
 if since
 comments = comments.where("created_at >= ?", since)
 end
 # Return an Array or ActiveRecord::Relation
 comments
end

Maximum Page Size

You can limit the number of results with max_page_size::

field :featured_comments, CommentType.connection_type, null: false, max_page_size: 50

In addition, you can set a global default for all connection that do not specify a max_page_size:

class MySchema < GraphQL::Schema
 default_max_page_size 100
end

Connection types

You can customize connection and edge types by using the class-based API:

Make an edge class for use in the connection below:
class PostEdgeType < GraphQL::Types::Relay::BaseEdge
 node_type(PostType)
end

Make a customized connection type
class PostConnectionWithTotalCountType < GraphQL::Types::Relay::BaseConnection
 edge_type(PostEdgeType)

 field :total_count, Integer, null: false
 def total_count
 # - `object` is the Connection
 # - `object.nodes` is the collection of Posts
 object.nodes.size
 end
end

Now, you can use PostConnectionWithTotalCountType to define a connection with the “totalCount” field:

class AuthorType < GraphQL::Schema::Object
 # Use the custom connection type:
 field :posts, PostConnectionWithTotalCountType, null: false, connection: true
end

(It uses connection: true because the type name doesn’t end in "Connection".)

This way, you can query your custom fields, for example:

{
 author(id: 1) {
 posts {
 totalCount # <= Your custom field
 }
 }
}

In the same vein, you can extend your *Edge classes with extra fields.

Customizing Base Classes

The provided classes in {{ “GraphQL::Types::Relay” | api_doc }} extend {{ “Schema::Object” | api_doc }}, but if you want to add your own extensions, you can build your own type system using the built-in ones for inspiration.

For example, to make your connection classes extend your own base object, you could add a base connection class to your app:

class Types::BaseConnection < Types::BaseObject
 # ... copy-paste here
end

Then take code from {{ “GraphQL::Types::Relay::BaseConnection” | api_doc }} and adapt it to your app.

You can mix-and-match customized and built-in types. For example, if you customize the base Edge class, you can still use the built-in {{ “Types::Relay::PageInfo” | api_doc }} class.

Custom Edge classes

For more robust custom edges, you can define a custom edge class. It will be obj in the edge type’s resolve function. For example, to define a membership edge:

Make sure to familiarize yourself with GraphQL::Relay::Edge --
you have to avoid naming conflicts here!
class MembershipSinceEdge < GraphQL::Relay::Edge
 # Cache `membership` to avoid multiple DB queries
 def membership
 @membership ||= begin
 # "parent" and "node" are passed in from the surrounding Connection,
 # See `Edge#initialize` for details
 person = self.parent
 team = self.node
 Membership.where(person: person, team: team).first
 end
 end

 def member_since
 membership.created_at.to_i
 end

 def leader?
 membership.leader?
 end
end

Then, hook it up with custom edge type and custom connection type:

Person => Membership => Team
class MembershipSinceEdgeType < GraphQL::Types::Relay::BaseEdge
 node_type(TeamType)

 field :member_since, Integer, null: false,
 description: "The date that this person joined this team"
 field :is_primary, Boolean, null: false,
 description: "Is this person the team leader?",
 method: :primary?
end

class TeamMembershipsConnectionType < GraphQL::Types::Relay::BaseConnection
 # Here, hook up your custom class with `edge_class:`
 edge_type(MembershipSinceEdgeType, edge_class: MembershipSinceEdge)
end

Connection objects

Maybe you need to make a connection object yourself (for example, to return a connection type from a mutation). You can create a connection object like this:

items = [...] # your collection objects
args = {} # stub out arguments for this connection object
connection_class = GraphQL::Relay::BaseConnection.connection_for_nodes(items)
connection_class.new(items, args)

.connection_for_nodes will return RelationConnection or ArrayConnection depending on items, then you can make a new connection

For specifying a connection based on an ActiveRecord::Relation or Sequel::Dataset:

object = {} # your newly created object
items = [...] # your AR or Sequel collection
args = {} # stub out arguments for this connection object
items_connection = GraphQL::Relay::RelationConnection.new(
 items,
 args
)
edge = GraphQL::Relay::Edge.new(object, items_connection)

Additionally, connections may be provided with the GraphQL::Field that created them. This may be used for custom introspection or instrumentation. For example,

 Schema.get_field(TodoListType, "todos")
 # => #<GraphQL::Field name="todos">
 context.irep_node.definitions[TodoListType]
 # => #<GraphQL::Field name="todos">
 # although this one may not work with fields on interfaces

Custom connections

You can define a custom connection class and add it to GraphQL::Relay.

First, define the custom connection:

require "set" # From Ruby's standard library
class SetConnection < BaseConnection
 # derive a cursor from `item`
 def cursor_from_node(item)
 # ...
 end

 private
 # apply `#first` & `#last` to limit results
 def paged_nodes
 # ...
 end

 # apply cursor, order, filters, etc
 # to get a subset of matching objects
 def sliced_nodes
 # ...
 end
end

Then, register the new connection with GraphQL::Relay::BaseConnection:

When exposing a `Set`, use `SetConnection`:
GraphQL::Relay::BaseConnection.register_connection_implementation(Set, SetConnection)

At runtime, GraphQL::Relay will use SetConnection to expose Sets.

Creating connection fields by hand

If you need lower-level access to Connection fields, you can create them programmatically. Given a GraphQL::Field which returns a collection of items, you can turn it into a connection field with ConnectionField.create.

For example, to wrap a field with a connection field:

field = GraphQL::Field.new
... define the field
connection_field = GraphQL::Relay::ConnectionField.create(field)

Cursors

By default, cursors are encoded in base64 to make them opaque to a human client. You can specify a custom encoder with Schema#cursor_encoder. The value should be an object which responds to .encode(plain_text, nonce:) and .decode(encoded_text, nonce: false).

For example, to use URL-safe base-64 encoding:

module URLSafeBase64Encoder
 def self.encode(txt, nonce: false)
 Base64.urlsafe_encode64(txt)
 end

 def self.decode(txt, nonce: false)
 Base64.urlsafe_decode64(txt)
 end
end

MySchema = GraphQL::Schema.define do
 # ...
 cursor_encoder(URLSafeBase64Encoder)
end

Now, all connections will use URL-safe base-64 encoding.

From a connection instance, the cursor_encoders methods available via {{ “GraphQL::Relay::BaseConnection#encode” | api_doc }} and {{ “GraphQL::Relay::BaseConnection#decode” | api_doc }}

layout: guide
doc_stub: false
search: true
title: Mutations
section: Relay
desc: Implement Relay-compliant mutation fields
index: 2

NOTE: See {% internal_link “Mutation Classes”, “/mutations/mutation_classes” %} for an updated mutation API.

Relay uses a strict mutation API [https://facebook.github.io/relay/docs/en/mutations.html] for modifying the state of your application. This API makes mutations predictable to the client.

On the client-side, Relay also requires you to specify how it should interpret the response from your GraphQL server, which may require your server-side mutations to return payloads with specific fields.

Mutation root

To add mutations to your GraphQL schema, define a mutation type and pass it to your schema:

Define the mutation type
class MutationType < GraphQL::Schema::Object
 # ...
end

and pass it to the schema
class MySchema < GraphQL::Schema
 query QueryType
 mutation MutationType
end

Like QueryType, MutationType is a root of the schema.

Mutation fields

Members of MutationType are mutation fields. For GraphQL in general, mutation fields are identical to query fields except that they have side-effects (which mutate application state, eg, update the database).

For Relay-compliant GraphQL, a mutation field must comply to a strict API. GraphQL::Relay includes a mutation definition helper (see below) to make it simple.

After defining a mutation (see below), add it to your mutation type:

class MutationType < GraphQL::Schema::Object
 # Add the mutation's derived field to the mutation type
 field :add_comment, field: AddCommentMutation.field
 # ...
end

Relay mutations

To define a mutation, use GraphQL::Relay::Mutation.define. Inside the block, you should configure:

	name, which will name the mutation field & derived types

	input_fields, which will be applied to the derived InputObjectType

	return_fields, which will be applied to the derived ObjectType

	resolve(->(object, inputs, ctx) { ... }), the mutation which will actually happen

Whereas you can have whatever combination and number of input_fields you wish, Relay expects different return fields when using certain mutator configuration you use on the client-side:

	FIELDS_CHANGE — expects a field for the mutated object.

	NODE_DELETE — expects fields for the destroyed object and the destroyed object’s parent

	RANGE_ADD — expects fields for the newly created edge (see below) and its parent

	RANGE_DELETE - expects fields for the ID(s) of the deleted children and their parent

For example:

AddCommentMutation = GraphQL::Relay::Mutation.define do
 # Used to name derived types, eg `"AddCommentInput"`:
 name "AddComment"

 # Accessible from `inputs` in the resolve function:
 input_field :postId, !types.ID
 input_field :authorId, !types.ID
 input_field :body, !types.String

 # The result has access to these fields,
 # resolve must return a hash with these keys.
 # On the client-side this would be configured
 # as RANGE_ADD mutation, so our returned fields
 # must conform to that API.
 return_field :post, PostType
 return_field :commentsConnection, CommentType.connection_type
 return_field :newCommentEdge, CommentType.edge_type

 # The resolve proc is where you alter the system state.
 resolve ->(object, inputs, ctx) {
 post = Post.find(inputs[:postId])
 comments = post.comments
 new_comment = comments.build(authorId: inputs[:authorId], body: inputs[:body])
 new_comment.save!

 # Use this helper to create the response that a
 # client-side RANGE_ADD mutation would expect.
 range_add = GraphQL::Relay::RangeAdd.new(
 parent: post,
 collection: comments,
 item: new_comment,
 context: ctx,
)

 response = {
 post: post,
 commentsConnection: range_add.connection,
 newCommentEdge: range_add.edge,
 }
 }
end

Derived Objects

graphql-ruby uses your mutation to define some members of the schema. Under the hood, GraphQL creates:

	A field for your schema’s mutation root, as AddCommentMutation.field

	A derived InputObjectType for input values, as AddCommentMutation.input_type

	A derived ObjectType for return values, as AddCommentMutation.return_type

Each of these derived objects maintains a reference to the parent Mutation in the mutation attribute. So you can access it from the derived object:

Define a mutation:
AddCommentMutation = GraphQL::Relay::Mutation.define { ... }
Get the derived input type:
AddCommentMutationInput = AddCommentMutation.input_type
Reference the parent mutation:
AddCommentMutationInput.mutation
=> #<GraphQL::Relay::Mutation @name="AddComment">

Mutation Resolution

In the mutation’s resolve function, it can mutate your application state (eg, writing to the database) and return some results.

resolve is called with:

	object, which is the root_value: provided to Schema.execute

	inputs, which is a hash whose keys are the ones defined by input_field. (This value comes from args[:input].)

	ctx, which is the query context

It must return a hash whose keys match your defined return_fields. (Or, if you specified a return_type, you can return an object suitable for that type.)

Specify a Return Type

Instead of specifying return_fields, you can specify a return_type for a mutation. This type will be used to expose the object returned from resolve.

CreateUser = GraphQL::Relay::Mutation.define do
 return_type UserMutationResultType
 # ...
 resolve ->(obj, input, ctx) {
 user = User.create(input)
 # this object will be treated as `UserMutationResultType`
 UserMutationResult.new(user, client_mutation_id: input[:clientMutationId])
 }
end

If you provide your own return type, it’s up to you to support clientMutationId

Specifying a Return Interface

An alternative to defining the whole return type from scratch is to specify return_interfaces.
The result of the resolve block will be passed to the field definitions in the interfaces,
and both interface-specific and mutation-specific fields will be available to clients.

MutationResult = GraphQL::InterfaceType.define do
 name "MutationResult"
 field :success, !types.Boolean
 field :notice, types.String
 field :errors, types[ValidationError]
end

CreatePost = GraphQL::Relay::Mutation.define do
 # ...
 return_field :slug, types.String
 return_field :url, types.String
 return_interfaces [MutationResult],

 # clientMutationId will also be available automatically
 resolve ->(obj, input, ctx) {
 post, notice = Post.create_with_input(...)
 {
 success: post.persisted?
 notice: notice
 url: post.url
 errors: post.errors
 }
 }
end

layout: guide
doc_stub: false
search: true
title: Object Identification
section: Relay
desc: Working with Relay-style global IDs
index: 0

Relay uses global object identification [https://facebook.github.io/relay/graphql/objectidentification.htm] to support some of its features:

	Caching: Unique IDs are used as primary keys in Relay’s client-side cache.

	Refetching: Relay uses unique IDs to refetch objects when it determines that its cache is stale. (It uses the Query.node field to refetch objects.)

Defining UUIDs

You must provide a function for generating UUIDs and fetching objects with them. In your schema, define self.id_from_object and self.object_from_id:

class MySchema < GraphQL::Schema
 def self.id_from_object(object, type_definition, query_ctx)
 # Call your application's UUID method here
 # It should return a string
 MyApp::GlobalId.encrypt(object.class.name, object.id)
 end

 def self.object_from_id(id, query_ctx)
 class_name, item_id = MyApp::GlobalId.decrypt(id)
 # "Post" => Post.find(item_id)
 Object.const_get(class_name).find(item_id)
 end
end

An unencrypted ID generator is provided in the gem. It uses Base64 to encode values. You can use it like this:

class MySchema < GraphQL::Schema
 # Create UUIDs by joining the type name & ID, then base64-encoding it
 def self.id_from_object(object, type_definition, query_ctx)
 GraphQL::Schema::UniqueWithinType.encode(type_definition.name, object.id)
 end

 def self.object_from_id(id, query_ctx)
 type_name, item_id = GraphQL::Schema::UniqueWithinType.decode(id)
 # Now, based on `type_name` and `id`
 # find an object in your application
 #
 end
end

Node interface

One requirement for Relay’s object management is implementing the "Node" interface.

To implement the node interface, add {{ “GraphQL::Relay::Node.interface” | api_doc }} to your definition:

class Types::PostType < GraphQL::Schema::object
 # Implement the "Node" interface for Relay
 implements GraphQL::Relay::Node.interface
 # ...
end

To tell GraphQL how to resolve members of the "Node" interface, you must also define Schema.resolve_type:

class MySchema < GraphQL::Schema
 # You'll also need to define `resolve_type` for
 # telling the schema what type Relay `Node` objects are
 def self.resolve_type(type, obj, ctx)
 case obj
 when Post
 Types::PostType
 when Comment
 Types::CommentType
 else
 raise("Unexpected object: #{obj}")
 end
 end
end

UUID fields

Relay Nodes must have a field named "id" which returns a globally unique ID.

To add a UUID field named "id", use the global_id_field helper:

class Types::PostType < GraphQL::Schema::Object
 # `id` exposes the UUID
 global_id_field :id
 # ...
end

This field will call the previously-defined id_from_object class method.

node field (find-by-UUID)

You should also provide a root-level node field so that Relay can refetch objects from your schema. It is provided as GraphQL::Relay::Node.field, so you can attach it like this:

class Types::QueryType < GraphQL::Schema::Object
 # Used by Relay to lookup objects by UUID:
 field :node, field: GraphQL::Relay::Node.field
 # ...
end

nodes field

You can also provide a root-level nodes field so that Relay can refetch objects by IDs. Similarly, it is provided as GraphQL::Relay::Node.plural_field:

class QueryType < GraphQL::Schema::Object
 # Fetches a list of objects given a list of IDs
 field :nodes, field: GraphQL::Relay::Node.plural_field
 # ...
end

layout: guide
doc_stub: false
search: true
section: Schema
title: Class-based API
desc: Define your GraphQL schema with Ruby classes (1.8.x alpha releases)
class_based_api: true
index: 10

In GraphQL 1.8+, you can use Ruby classes to build your schema. You can mix class-style and .define-style type definitions in a schema.

You can get an overview of this new feature:

	Rationale & Goals

	Compatibility & Migration Overview

	Using the upgrader

	Roadmap

And learn about the APIs:

	{% internal_link “Schema class”, “/schema/definition” %}

	Common type configurations (shared by all the following types)

	{% internal_link “Object classes”, “/type_definitions/objects” %}

	{% internal_link “Interface classes”, “/type_definitions/interfaces” %}

	{% internal_link “Union classes”, “/type_definitions/unions” %}

	{% internal_link “Enum classes”, “/type_definitions/enums” %}

	{% internal_link “Input Object classes”, “/type_definitions/input_objects” %}

	{% internal_link “Scalar classes”, “/type_definitions/scalars” %}

	{% internal_link “Customizing definitions”, “/type_definitions/extensions” %}

	{% internal_link “Custom introspection”, “/schema/introspection” %}

Rationale & Goals

This new API aims to improve the “getting started” experience and the schema customization experience by replacing GraphQL-Ruby-specific DSLs with familiar Ruby semantics (classes and methods).

Additionally, this new API must be cross-compatible with the current schema definition API so that it can be adopted bit-by-bit.

Compatibility & Migration overview

Parts of your schema can be converted one-by-one, so you can convert definitions gradually.

Classes

In general, each .define { ... } block will be converted to a class.

	Instead of a GraphQL::{X}Type, classes inherit from GraphQL::Schema::{X}. For example, instead of GraphQL::ObjectType.define { ... }, a definition is made by extending GraphQL::Schema::Object

	Any class hierarchy is supported; It’s recommended to create a base class for your application, then extend the base class for each of your types (like ApplicationController in Rails, see Customizing Definitions).

See sections below for specific information about each schema definition class.

Type Instances

The previous GraphQL::{X}Type objects are still used under the hood. Each of the new GraphQL::Schema::{X} classes implements a few methods:

	.to_graphql: creates a new instance of GraphQL::{X}Type

	.graphql_definition: returns a cached instance of GraphQL::{X}Type

If you have custom code which breaks on new-style definitions, try calling .graphql_definition to get the underlying type object.

As described below, .to_graphql can be overridden to customize the type system.

List Types and Non-Null Types

Previously, list types were expressed with types[T] and non-null types were expressed with !T. Now:

	List types are expressed with Ruby Arrays, [T], for example, field :owners, [Types::UserType]

	By default, list members are non-null, for example, [Types::UserType] becomes [User!]

	If your list members may be null, add , null: true to the array: [Types::UserType, null: true] becomes [User] (the list may include nil)

	Non-null types are expressed with keyword arguments null: or required:

	field takes a keyword null:. null: true means the field is nullable, null: false means the field is non-null (equivalent to !)

	argument takes a keyword required:. required: true means the argument is non-null (equivalent to !), required: false means that the argument is nullable

In legacy-style classes, you may also use plain Ruby methods to create list and non-null types:

	#to_non_null_type converts a type to a non-null variant (ie, T.to_non_null_type is equivalent to !T)

	#to_list_type converts a type to a list variant (ie, T.to_list_type is equivalent to types[T])

The ! method has been removed to avoid ambiguity with the built-in logical operator and related foot-gunning.

For compatibility, you may wish to backport ! to class-based type definitions. You have two options:

A refinement, activated in file scope or class/module scope [https://docs.ruby-lang.org/en/2.4.0/syntax/refinements_rdoc.html#label-Scope]:

Enable `!` method in this scope
using GraphQL::DeprecatedDSL

A monkeypatch, activated in global scope:

Enable `!` everywhere
GraphQL::DeprecatedDSL.activate

Connection fields & types

There is no connection(...) method. Instead, connection fields are inferred from the type name.

If the type name ends in Connection, the field is treated as a connection field.

This default may be overridden by passing a connection: true or connection: false keyword.

For example:

This will be treated as a connection, since the type name ends in "Connection"
field :projects, Types::ProjectType.connection_type

Resolve function compatibility

If you define a type with a class, you can use existing GraphQL-Ruby resolve functions with that class, for example:

Using a Proc literal or #call-able
field :something, ... resolve: ->(obj, args, ctx) { ... }
Using a predefined field
field :do_something, field: Mutations::DoSomething.field
Using a GraphQL::Function
field :something, function: Functions::Something.new

When using these resolution implementations, they will be called with the same (obj, args, ctx) parameters as before.

Upgrader

1.8 includes an auto-upgrader for transforming Ruby files from the .define-based syntax to class-based syntax. The upgrader is a pipeline of sequential transform operations. It ships with default pipelines, but you may customize the upgrade process by replacing the built-in pipelines with a custom ones.

The upgrader has an additional dependency, parser, which you must add to your project manually (for example, by adding to your Gemfile).

Remember that your project may be transformed one file at a time because the two syntaxes are compatible. This way, you can convert a few files and run your tests to identify outstanding issues, and continue working incrementally.

This transformation may not be perfect, but it should cover the most common cases. If you want to ask a question or report a bug, please {% open_an_issue “Upgrader question/bug report”,”Please share: the source code you’re trying to transform, the output you got from the transformer, and the output you want to get from the transformer.” %}.

Using the Default Upgrade Task

The upgrader ships with rake tasks, included as a railtie (source [https://github.com/rmosolgo/graphql-ruby/blob/v1.8.0/lib/graphql/railtie.rb]). The railtie will be automatically installed by your Rails app, and it provides the following tasks:

	graphql:upgrade:schema[path/to/schema.rb]: upgrade the Schema file

	graphql:upgrade:member[path/to/some/type.rb]: upgrade a type definition (object, interface, union, etc)

	graphql:upgrade[app/graphql/**/*]: run the member upgrade on files which have a suffix of _(type|interface|enum|union).rb

	graphql:upgrade:create_base_objects[path/to/graphql/]: add base classes to your project

Writing a Custom Upgrade Task

You might write a custom task because:

	You want to customize the transformation pipeline

	You’re not using Rails, so a railtie won’t work

To write a custom task, you can write a rake task (or Ruby script) which uses the upgrader’s API directly.

Here’s the code to upgrade a type definition with the default transform pipeline:

Read the original source code into a string
original_source = File.read("path/to/type.rb")
Initialize an upgrader with the default transforms
upgrader = GraphQL::Upgrader::Member.new(original_source)
Perform the transformation, get the transformed source code
transformed_source = upgrader.upgrade
Update the source file with the new code
File.write("path/to/type.rb", transformed_source)

In this custom code, you can pass some keywords to {{ “GraphQL::Upgrader::Member.new” | api_doc }}:

	type_transforms: Applied to the source code as a whole, applied first

	field_transforms: Applied to each field/connection/argument definition (extracted from the source, transformed independently, then re-inserted)

	clean_up_transforms: Applied to the source code as a whole, after the type and field transforms

Keep in mind that these transforms are performed in sequence, so the text changes over time. If you want to transform the source text, use .unshift() to add transforms to the beginning of the pipeline instead of the end.

For example, in script/graphql-upgrade:

#!/usr/bin/env ruby

@example Upgrade app/graphql/types/user_type.rb:
script/graphql-upgrade app/graphql/types/user_type.rb

Replace the default define-to-class transform with a custom one:
type_transforms = GraphQL::Upgrader::Member::DEFAULT_TYPE_TRANSFORMS.map { |t|
 if t == GraphQL::Upgrader::TypeDefineToClassTransform
 GraphQL::Upgrader::TypeDefineToClassTransform.new(base_class_pattern: "Platform::\\2s::Base")
 else
 t
 end
}

Add this transformer at the beginning of the list:
type_transforms.unshift(GraphQL::Upgrader::ConfigurationToKwargTransform.new(kwarg: "visibility"))

run the upgrader
original_text = File.read(ARGV[0])
upgrader = GraphQL::Upgrader::Member.new(original_text, type_transforms: type_transforms)
transformed_text = upgrader.upgrade
File.write(filename, transformed_text)

Writing a custom transformer

Objects in the transform pipeline may be:

	A class which responds to .new.apply(input_text) and returns the transformed code

	An object which responds to .apply(input_text) and returns the transformed code

The library provides a {{ “GraphQL::Upgrader::Transform” | api_doc }} base class with a few convenience methods. You can also customize the built-in transformers listed below.

For example, here’s a transform which rewrites type definitions from a model_type(model) do ... end factory method to the class-based syntax:

Create a custom transform for our `model_type` factory:
class ModelTypeToClassTransform < GraphQL::Upgrader::Transform
 def initialize
 # Find calls to the factory method, which have a type class inside
 @find_pattern = /^(+)([a-zA-Z_0-9:]*) = model_type\(-> ?\{ ?:{0,2}([a-zA-Z_0-9:]*) ?\} ?\) do/
 # Replace them with a class definition and a `model_name("...")` call:
 @replace_pattern = "\\1class \\2 < Platform::Objects::Base\n\\1 model_name \"\\3\""
 end

 def apply(input_text)
 # Run the substitution on the input text:
 input_text.sub(@find_pattern, @replace_pattern)
 end
end
Add the class to the beginning of the pipeline
type_transforms.unshift(ModelTypeToClassTransform)

Built-in transformers

Follow links to the API doc to read the source of each transform:

Type transforms ({{ “GraphQL::Upgrader::Member::DEFAULT_TYPE_TRANSFORMS” | api_doc }}):

	{{ “GraphQL::Upgrader::Transform” | api_doc }} base class, provides a normalize_type_expression helper

	{{ “GraphQL::Upgrader::TypeDefineToClassTransform” | api_doc }} turns .define into class ... with a regexp substitution

	{{ “GraphQL::Upgrader::NameTransform” | api_doc }} takes name "..." and removes it if it’s redundant, or converts it to graphql_name "..."

	{{ “GraphQL::Upgrader::InterfacesToImplementsTransform” | api_doc }} turns interfaces [A, B...] into implements(A)\nimplements(B)...

Field transforms ({{ “GraphQL::Upgrader::Member::DEFAULT_FIELD_TRANSFORMS” | api_doc }}):

	{{ “GraphQL::Upgrader::RemoveNewlinesTransform” | api_doc }} removes newlines from field definitions to normalize them

	{{ “GraphQL::Upgrader::PositionalTypeArgTransform” | api_doc }} moves type X from the do ... end block into a positional argument, to normalize the definition

	{{ “GraphQL::Upgrader::ConfigurationToKwargTransform” | api_doc }} moves a do ... end configuration to a keyword argument. By default, this is used for property and description. You can add new instances of this transform to convert your custom DSL.

	{{ “GraphQL::Upgrader::PropertyToMethodTransform” | api_doc }} turns property: to method:

	{{ “GraphQL::Upgrader::UnderscoreizeFieldNameTransform” | api_doc }} converts field names to underscore-case. NOTE that this conversion may be wrong in the case of bodyHTML => body_html. When you find it is wrong, manually revert it and preserve the camel-case field name.

	{{ “GraphQL::Upgrader::ResolveProcToMethodTransform” | api_doc }} converts resolve -> { ... } to def {field_name} ... method definitions

	{{ “GraphQL::Upgrader::UpdateMethodSignatureTransform” | api_doc }} converts the type name to the new syntax, and adds null:/required: to the method signature

Clean-up transforms ({{ “GraphQL::Upgrader::Member::DEFAULT_CLEAN_UP_TRANSFORMS” | api_doc }}):

	{{ “GraphQL::Upgrader::RemoveExcessWhitespaceTransform” | api_doc }} removes redundant newlines

	{{ “GraphQL::Upgrader::RemoveEmptyBlocksTransform” | api_doc }} removes do end with nothing inside them

Roadmap

Here is a working plan for rolling out this feature:

	ongoing:

	☐ Receive feedback from GraphQL schema owners about the new API (usability & goals)

	graphql 1.8:

	☑ Build a schema definition API based on classes instead of singletons

	☑ Migrate a few components of GitHub’s GraphQL schema to this new API

	☑ Build advanced class-based features:

	☑ Custom Context classes

	☑ Custom introspection types

	☐ ~~Custom directives~~ Probably will mess with execution soon, not worth the investment now

	☐ ~~Custom Schema#execute method~~ not necessary

	☑ Migrate all of GitHub’s GraphQL schema to this new API

	graphql 1.9:

	☐ Update all GraphQL-Ruby docs to reflect this new API

	graphql 1.10:

	☐ Begin sunsetting .define: isolate it in its own module

	graphql 2.0:

	☐ Remove .define

Common Type Configurations

Some configurations are used for all types described below:

	graphql_name overrides the type name. (The default value is the Ruby constant name, without any namespaces)

	description provides a description for GraphQL introspection.

For example:

class Types::TodoList < GraphQL::Schema::Object # or Scalar, Enum, Union, whatever
 graphql_name "List" # Overrides the default of "TodoList"
 description "Things to do (may have already been done)"
end

(Implemented in {{ “GraphQL::Schema::Member” | api_doc }}).

layout: guide
doc_stub: false
search: true
section: Schema
title: Definition
desc: Defining your schema
class_based_api: true
index: 1

A GraphQL system is called a schema. The schema contains all the types and fields in the system. The schema executes queries and publishes an {% internal_link “introspection system”,”/schema/introspection” %}.

Your GraphQL schema is a class that extends {{ “GraphQL::Schema” | api_doc }}, for example:

class MyAppSchema < GraphQL::Schema
 max_complexity 400
 query Types::Query
 use GraphQL::Batch

 # Define hooks as class methods:
 def self.resolve_type(type, obj, ctx)
 # ...
 end

 def self.object_from_id(node_id, ctx)
 # ...
 end

 def self.id_from_object(object, type, ctx)
 # ...
 end
end

There are lots of schema configuration options:

	root objects, introspection and orphan types

	object identification hooks

	execution configuration

	context class

	default limits

	plugins

Root Objects, Introspection and Orphan Types

A GraphQL schema is a web of interconnected types, and it has a few starting points for discovering the elements of that web:

Root types (query, mutation, and subscription) are the entry points for queries to the system [http://graphql.org/learn/schema/#the-query-and-mutation-types]. Each one is an object type which can be connected to the schema by a method with the same name:

class MySchema < GraphQL::Schema
 # Required:
 query Types::Query
 # Optional:
 mutation Types::Mutation
 subscription Types::Subscription
end

Introspection is a built-in part of the schema. Every schema has a default introspection system, but you can {% internal_link “customize it”,”/schema/introspection” %} and hook it up with introspection:

class MySchema < GraphQL::Schema
 introspection CustomIntrospection
end

Orphan Types are types which should be in the schema, but can’t be discovered by traversing the types and fields from query, mutation or subscription. This has one very specific use case, see {% internal_link “Orphan Types”, “/type_definitions/interfaces#orphan-types” %}.

class MySchema < GraphQL::Schema
 orphan_types [Types::Comment, ...]
end

Object Identification Hooks

A GraphQL schema needs a handful of hooks for finding and disambiguating objects while queries are executed.

resolve_type is used when a specific object’s corresponding GraphQL type must be determined. This happens for fields that return {% internal_link “interface”, “/type_definitions/interfaces” %} or {% internal_link “union”, “/type_definitions/unions” %} types. The class method def self.resolve_type is used:

class MySchema < GraphQL::Schema
 def self.resolve_type(abstract_type, object, context)
 # Disambiguate `object`, from among `abstract_type`'s members
 # (`abstract_type` is an interface or union type.)
 end
end

object_from_id is used by Relay’s node(id: ID!): Node field. It receives a unique ID and must return the object for that ID, or nil if the object isn’t found (or if the should be hidden from the current user).

class MySchema < GraphQL::Schema
 def self.object_from_id(unique_id, context)
 # Find and return the object for `unique_id`
 # or `nil`
 end
end

id_from_object is used to implement Relay’s Node.id field. It should return a unique ID for the given object. This ID will later be sent to object_from_id to refetch the object.

class MySchema < GraphQL::Schema
 def self.id_from_object(object, type, context)
 # Return a unique ID for `object`, whose GraphQL type is `type`
 end
end

Execution Configuration

instrument attaches instrumenters to the schema, see {% internal_link “Instrumentation”, “/queries/instrumentation” %} for more information.

class MySchema < GraphQL::Schema
 instrument :field, ResolveTimerInstrumentation
end

tracer is another way to hook into execution, see {% internal_link “Tracing”, “/queries/tracing” %} for more.

class MySchema < GraphQL::Schema
 tracer MetricTracer
end

query_analyzer and multiplex_analyzer accept processors for ahead-of-type query analysis, see {% internal_link “Analysis”, “/queries/analysis” %} for more.

class MySchema < GraphQL::Schema
 query_analyzer MyQueryAnalyzer.new
end

lazy_resolve registers classes with {% internal_link “lazy execution”, “/schema/lazy_execution” %}:

class MySchema < GraphQL::Schema
 lazy_resolve Promise, :sync
end

type_error handles type errors at runtime, read more in the {% internal_link “Invariants guide”, “/errors/type_errors” %}.

class MySchema < GraphQL::Schema
 def self.type_error(type_err, context)
 # Handle `type_err` in some way
 end
end

rescue_from accepts error handlers for application errors, for example:

class MySchema < GraphQL::Schema
 rescue_from(ActiveRecord::RecordNotFound) { "Not found" }
end

Context Class

Usually, context is an instance of {{ “GraphQL::Query::Context” | api_doc }}, but you can create a custom subclass and attach it with .context_class, for example:

class CustomContext < GraphQL::Query::Context
 # Shorthand to get the current user
 def viewer
 self[:viewer]
 end
end

class MySchema < GraphQL::Schema
 context_class CustomContext
end

Then, during execution, context will be an instance CustomContext.

Default Limits

max_depth and max_complexity apply some limits to incoming queries. See {% internal_link “Complexity and Depth”, “/queries/complexity_and_depth” %} for more.

default_max_page_size applies limits to Connection fields.

class MySchema < GraphQL::Schema
 max_depth 10
 max_complexity 300
 default_max_page_size 20
end

Plugins

A plugin is an object that responds to #use. Plugins are used to attach new behavior to a schema without a lot of API overhead. For example, the gem’s {% internal_link “monitoring tools”, “/queries/tracing#monitoring” %} are plugins:

class MySchema < GraphQL::Schema
 use(GraphQL::Tracing::NewRelicTracing)
end

layout: guide
doc_stub: false
search: true
section: Schema
title: Dynamic definition
desc: You can define your schema dynamically based on other data

Many examples show how to use .define and store the result in a Ruby constant:

PostType = GraphQL::ObjectType.define do ... end

However, you can call .define anytime and store the result anywhere. For example, you can define a method which creates types:

@return [GraphQL::ObjectType] a type derived from `model_class`
def create_type(model_class)
 GraphQL::ObjectType.define do
 name(model_class.name)
 description("Generated programmatically from model: #{model_class.name}")
 # Make a field for each column:
 model_class.columns.each do |column|
 field(column.name, convert_type(column.type))
 end
 end
end

@return [GraphQL::BaseType] a GraphQL type for `database_type`
def convert_type(database_type)
 # ...
end

You can also define fields for associated objects. You’ll need a way to access them programmatically.

Hash<Model => GraphQL::ObjectType>
MODEL_TO_TYPE = {}

def create_type(model_class)
 # ...
 GraphQL::ObjectType.define do
 # ...
 # Make a field for associations
 model_class.associations.each do |association|
 # The proc will be eval'd later - by that time, there will be a type in the lookup hash
 field(association.name, -> { MODEL_TO_TYPE[association.associated_model] })
 end
 end
end

all_models_in_application.each { |model_class| MODEL_TO_TYPE[model_class] = create_type(model_class) }

There is one caveat to using .define. The block is called with instance_eval, so self is a definition proxy, not the outer self. For this reason, you may need to assign values to local variables, then use them in .define. (.define has access to the local scope, but not the outer self.)

class DynamicTypeDefinition
 attr_reader :model
 def initialize(model)
 @model = model
 end

 def to_graphql_type
 # This doesn't work because `model` is actually `self.model`, which doesn't work inside `.define`
 # GraphQL::ObjectType.define do
 # name(model.name)
 # end
 #
 # Instead, assign a local variable first:
 model_name = model.name
 GraphQL::ObjectType.define do
 name(model_name)
 end
 # 👌
 end
end

layout: guide
doc_stub: false
search: true
title: Generators
section: Schema
desc: Use Rails generators to install GraphQL and scaffold new types.
index: 3

If you’re using GraphQL with Ruby on Rails, you can use generators to:

	setup GraphQL, including GraphiQL [https://github.com/graphql/graphiql], GraphQL::Batch [https://github.com/Shopify/graphql-batch], and Relay [https://facebook.github.io/relay/]

	scaffold types

	scaffold Relay mutations

	scaffold GraphQL::Batch loaders

graphql:install

You can add GraphQL to a Rails app with graphql:install:

rails generate graphql:install

This will:

	Set up a folder structure in app/graphql/

	Add schema definition

	Add base type classes

	Add a Query type definition

	Add a route and controller for executing queries

	Install graphiql-rails [https://github.com/rmosolgo/graphiql-rails]

After installing you can see your new schema by:

	bundle install

	rails server

	Open localhost:3000/graphiql

Options

	--relay will add Relay [https://facebook.github.io/relay/]-specific code to your schema

	--batch will add GraphQL::Batch [https://github.com/Shopify/graphql-batch] to your gemfile and include the setup in your schema

	--no-graphiql will exclude graphiql-rails from the setup

	--schema=MySchemaName will be used for naming the schema (default is #{app_name}Schema)

Scaffolding Types

Several generators will add GraphQL types to your project. Run them with -h to see the options:

	rails g graphql:object

	rails g graphql:interface

	rails g graphql:union

	rails g graphql:enum

	rails g graphql:scalar

Scaffolding Mutations

You can prepare a Relay Classic mutation with

rails g graphql:mutation #{mutation_name}

Scaffolding Loaders

You can prepare a GraphQL::Batch loader with

rails g graphql:loader

layout: guide
doc_stub: false
search: true
title: Introspection
section: Schema
desc: GraphQL has an introspection system that tells about the schema.
class_based_api: true
index: 2

A GraphQL schema has a built-in introspection system [http://graphql.org/learn/introspection/] that publishes the schema’s structure. In fact, the introspection system can be queried using GraphQL, for example:

{
 __schema {
 queryType {
 name
 }
 }
}
Returns:
{
"data": {
"__schema": {
"queryType": {
"name": "Query"
}
}
}
}

This system is used for GraphQL tooling like the GraphiQL editor [https://github.com/graphql/graphiql].

Here are the default parts of the introspection system:

	__schema is a root-level field that contains data about the schema: its entry points, types, and directives.

	__type(name: String!) is a root-level field that returns data about a type with the given name, if there is a type with that name.

	__typename works a bit differently: it can be added to any selection, and it will return the type of object being queried.

Here are some __typename examples:

{
 user(id: "1") {
 handle
 __typename
 }
}
Returns:
{
"data": {
"user": {
"handle": "rmosolgo",
"__typename": "User"
}
}
}

For unions and interfaces, __typename returns the object type for the current object, for example:

{
 search(term: "puppies") {
 title
 __typename
 }
}
Returns:
{
"data": {
"search": [
{
"title": "Sound of Dogs Barking",
"__typename": "AudioClip",
},
{
"title": "Cute puppies playing with a stick",
"__typename": "VideoClip",
},
{
"title": "The names of my favorite pets",
"__typename": "TextSnippet"
},
]
}
}

Customizing Introspection

This is an experimental feature, only supported in class-based schemas.

With a class-based schema, you can use custom introspection types.

create a module namespace for your custom types:
module Introspection
 # described below ...
end

class MySchema < GraphQL::Schema
 # ...
 # then pass the module as `introspection`
 introspection Introspection
end

Keep in mind that off-the-shelf tooling may not support your custom introspection fields. You may have to modify existing tooling or create your own tools to make use of your extensions.

Introspection Namespace

The introspection namespace may contain a few different customizations:

	Class-based {% internal_link “object definitions”, “/type_definitions/objects” %} which replace the built-in introspection types (such as __Schema and __Type)

	EntryPoints, A class-based {% internal_link “object definition”, “/type_definitions/objects” %} containing introspection entry points (like __schema and __type(name:)).

	DynamicFields, A class-based {% internal_link “object definition”, “/type_definitions/objects” %} containing dynamic, globally-available fields (like __typename.)

Custom Introspection Types

The module passed as introspection may contain classes with the following names, which replace the built-in introspection types:

Custom class name | GraphQL type | Built-in class name
–|–|–
SchemaType | __Schema | {{ “GraphQL::Introspection::SchemaType” | api_doc }}
TypeType | __Type | {{ “GraphQL::Introspection::TypeType” | api_doc }}
DirectiveType | __Directive | {{ “GraphQL::Introspection::DirectiveType” | api_doc }}
DirectiveLocationType | __DirectiveLocation | {{ “GraphQL::Introspection::DirectiveLocationEnum” | api_doc }}
EnumValueType | __EnumValue | {{ “GraphQL::Introspection::EnumValueType” | api_doc }}
FieldType | __Field | {{ “GraphQL::Introspection::FieldType” | api_doc }}
InputValueType | __InputValue | {{ “GraphQL::Introspection::InputValueType” | api_doc }}
TypeKindType | __TypeKind | {{ “GraphQL::Introspection::TypeKindEnum” | api_doc }}

The class-based definitions’ names must match the names of the types they replace.

Extending a Built-in Type

The built-in classes listed above may be extended:

module Introspection
 class SchemaType < GraphQL::Introspection::SchemaType
 # ...
 end
end

Inside the class definition, you may:

	add new fields by calling field(...) and providing implementations

	redefine field structure by calling field(...)

	provide new field implementations by defining methods

	provide new descriptions by calling description(...)

Introspection Entry Points

The GraphQL spec describes two entry points to the introspection system:

	__schema returns data about the schema (as type __Schema)

	__type(name:) returns data about a type, if one is found by name (as type __Type)

You can re-implement these fields or create new ones by creating a custom EntryPoints class in your introspection namespace:

module Introspection
 class EntryPoints < GraphQL::Introspection::EntryPoints
 # ...
 end
end

This class an object type definition, so you can override fields or add new ones here. They’ll be available on the root query object, but ignored in introspection (just like __schema and __type).

Dynamic Fields

The GraphQL spec describes a field which may be added to any selection: __typename. It returns the name of the current GraphQL type.

You can add fields like this (or override __typename) by creating a custom DynamicFields defintion:

module Introspection
 class DynamicFields < GraphQL::Introspection::DynamicFields
 # ...
 end
end

Any fields defined there will be available in any selection, but ignored in introspection (just like __typename).

layout: guide
doc_stub: false
search: true
title: Lazy Execution
section: Schema
desc: Resolve functions can return “unfinished” results. GraphQL will defer finishing them until other fields have been resolved.

With lazy execution, you can optimize access to external services (such as databases) by making batched calls. Building a lazy loader has three steps:

	Define a lazy-loading class with one method for loading & returning a value

	Connect it to your schema with {{ “GraphQL::Schema#lazy_resolve” | api_doc }}

	In resolve functions, return instances of the lazy-loading class

Lazy resolution can be {% internal_link “instrumented”,”/fields/instrumentation” %}.

Example: Batched Find

Here’s a way to find many objects by ID using one database call, preventing N+1 queries.

	Lazy-loading class which finds models by ID.

class LazyFindPerson
 def initialize(query_ctx, person_id)
 @person_id = person_id
 # Initialize the loading state for this query,
 # or get the previously-initiated state
 @lazy_state = query_ctx[:lazy_find_person] ||= {
 pending_ids: Set.new,
 loaded_ids: {},
 }
 # Register this ID to be loaded later:
 @lazy_state[:pending_ids] << person_id
 end

 # Return the loaded record, hitting the database if needed
 def person
 # Check if the record was already loaded:
 loaded_record = @lazy_state[:loaded_ids][@person_id]
 if loaded_record
 # The pending IDs were already loaded,
 # so return the result of that previous load
 loaded_record
 else
 # The record hasn't been loaded yet, so
 # hit the database with all pending IDs
 pending_ids = @lazy_state[:pending_ids].to_a
 people = Person.where(id: pending_ids)
 people.each { |person| @lazy_state[:loaded_ids][person.id] = person }
 @lazy_state[:pending_ids].clear
 # Now, get the matching person from the loaded result:
 @lazy_state[:loaded_ids][@person_id]
 end
 end

	Connect the lazy resolve method

class MySchema < GraphQL::Schema
 # ...
 lazy_resolve(LazyFindPerson, :person)
end

	Return lazy objects from resolve

field :author, PersonType, null: true

def author
 LazyFindPerson.new(context, object.author_id)
end

Now, calls to author will use batched database access. For example, this query:

{
 p1: post(id: 1) { author { name } }
 p2: post(id: 2) { author { name } }
 p3: post(id: 3) { author { name } }
}

Will only make one query to load the author values.

Gems for batching

The example above is simple and has some shortcomings. Consider the following gems for a robust solution to batched resolution:

	graphql-batch [https://github.com/shopify/graphql-batch] provides a powerful, flexible toolkit for lazy resolution with GraphQL.

	dataloader [https://github.com/sheerun/dataloader] is more general promise-based utility for batching queries within the same thread.

	batch-loader [https://github.com/exAspArk/batch-loader] works with any Ruby code including GraphQL, no extra dependencies or primitives.

layout: guide
doc_stub: false
search: true
title: Limiting Visibility
section: Schema
desc: Flag types and fields so that only some clients can see them.

Sometimes, you want to hide schema elements from some users. For example:

	some elements are feature flagged; or

	some elements require higher permissions

If you only want to limit access to these fields, consider using {% internal_link “field instrumentation”,”/fields/instrumentation” %} to check objects at runtime or {% internal_link “query analyzers”,”/queries/analysis” %} to check queries before running them.

If you want to completely hide some fields, types, enum values or arguments, read on!

Filtering

You can hide parts of the schema by passing except: or only: to Schema.execute. For example:

`except:` blacklists items:
filter = PermissionBlacklist.new(@current_user)
MySchema.execute(query_string, except: filter)
OR
`only:` whitelists items:
filter = PermissionWhitelist.new(@current_user)
MySchema.execute(query_string, only: filter)

During that query, some elements will be hidden. This means that fields, types, arguments or enum values will be treated as if they were not defined at all.

A filter must respond to #call(schema_member, ctx). When that method returns truthy, the schema member will be blacklisted or whitelisted.

For example, here’s an implementation of PermissionWhitelist above:

class PermissionWhitelist
 def initialize(person)
 @person = person
 end

 # If this returns true, the schema member will be allowed
 def call(schema_member, ctx)
 Permissions.allowed?(person, schema_member)
 end
end

The schema_member may be any of:

	Type ({{ “GraphQL::BaseType” | api_doc }} and subclasses)

	Field ({{ “GraphQL::Field” | api_doc }})

	Argument ({{ “GraphQL::Argument” | api_doc }})

	Enum value ({{ “GraphQL::EnumType::EnumValue” | api_doc }})

Use with Metadata

This feature pairs nicely with attaching custom data to types. See the {% internal_link “Extensions Guide”,”/type_definitions/extensions” %} for information about assigning values to an object’s metadata.

Then, you can check metadata in your filter. For example, to hide fields based on a metadata flag:

Hide secret objects from this user
top_secret = ->(schema_member, ctx) { schema_member.metadata[:top_secret]}
MySchema.execute(query_string, except: top_secret)

Printing a Filtered Schema

You can see how filters will be applied to the schema by printing the schema with that filter. {{ “GraphQL::Schema#to_definition” | api_doc }} accepts only: and except: options.

For example, to see how the schema looks to a specific user:

example_user = User.new(permission: :admin)
filter = PermissionWhitelist.new(example_user)
defn_string = MySchema.to_definition(only: filter)
puts defn_string
=> prints out the filtered schema

Schema#to_definition also accepts a context which will be passed to the filter as well, for example:

context = { current_user: example_user }
puts MySchema.to_definition(only: filter, context: context)

layout: guide
doc_stub: false
search: true
section: Schema
title: Root Types
desc: Root types are the entry points for queries, mutations and subscriptions.

GraphQL queries begin from root types [http://graphql.org/learn/schema/#the-query-and-mutation-types]: query, mutation, and subscription (experimental).

Attach these to your schema using methods with the same name:

class MySchema < GraphQL::Schema
 # required
 query Types::QueryType
 # optional
 mutation Types::MutationType
 # experimental
 subscription Types::SubscriptionType
end

The types are GraphQL::Schema::Object classes, for example:

app/graphql/types/query_type.rb
class Types::QueryType < GraphQL::Schema::Object
 # ...
end

Similarly:
class Types::MutationType < GraphQL::Schema::Object
 # ...
end
and
class Types::SubscriptionType < GraphQL::Schema::Object
 # ...
end

Each type is the entry point for the corresponding GraphQL query:

query GetPost {
 # `Query.post`
 post(id: 1) { ... }
}

mutation AddPost($postAttrs: PostInput!){
 # `Mutation.createPost`
 createPost(attrs: $postAttrs)
}

Experimental
subscription CommentAdded {
 # `Subscription.commentAdded`
 commentAdded(postId: 1)
}

layout: guide
doc_stub: false
search: true
title: Testing
section: Schema
desc: Techniques for testing your GraphQL system
index: 7

There are a few ways to test the behavior of your GraphQL schema:

	Don’t test the schema, test other objects instead

	Execute GraphQL queries and test the result

Don’t test the schema

The easiest way to test behavior of a GraphQL schema is to extract behavior into separate objects and test those objects in isolation. For Rails, you don’t test your models by running controller tests, right? Similarly, you can test “lower-level” parts of the system on their own without running end-to-end tests.

For example, consider a field which calculates its own value:

class PostType < GraphQL::Schema::Object
 # ...
 field :is_trending, Boolean, null: false

 def is_trending
 recent_comments = object.comments.where("created_at < ?", 1.day.ago)
 recent_comments.count > 100
 end
end

You can refactor this by creating a new class and applying it to your GraphQL schema:

app/models/post/trending.rb
class Post
 class Trending
 TRENDING_COMMENTS_COUNT = 100
 def initialize(post)
 @post = post
 end

 def value
 recent_comments = @post.comments.where("created_at < ?", 1.day.ago)
 recent_comments.count > TRENDING_COMMENTS_COUNT
 end
 end
end

....

class PostType < GraphQL::Schema::Object
 # ...
 field :is_trending, Boolean, null: false

 def is_trending
 Post::Trending.new(object).value
 end
end

This is an improvement because your behavior is not coupled to your GraphQL schema. Besides that, it’s easier to test: you can simply unit test the calculation class. For example:

spec/models/post/trending_spec.rb
RSpec.describe Post::Trending do
 let(:post) { create(:post) }
 let(:trending) { Post::Trending.new(post) }

 describe "#value" do
 context "when there are no recent comments" do
 it "is false" do
 expect(trending.value).to eq(false)
 end
 end

 context "when there are more than 100 recent comments" do
 before do
 101.times { create(:comment, post: post) }
 end

 it "is true" do
 expect(trending.value).to eq(true)
 end
 end
 end
end

Executing GraphQL queries

Sometimes, you really need an end-to-end test. Although it requires a lot of overhead, it’s nice to have a “sanity check” on the system as a whole (for example, authorization and database batching).

You can execute queries on your schema in a test. For example, you can set it up like this:

RSpec.describe MySchema do
 # You can override `context` or `variables` in
 # more specific scopes
 let(:context) { {} }
 let(:variables) { {} }
 # Call `result` to execute the query
 let(:result) {
 res = MySchema.execute(
 query_string,
 context: context,
 variables: variables
)
 # Print any errors
 if res["errors"]
 pp res
 end
 res
 }

 describe "a specific query" do
 # provide a query string for `result`
 let(:query_string) { %|{ viewer { name } }| }

 context "when there's no current user" do
 it "is nil" do
 # calling `result` executes the query
 expect(result["data"]["viewer"]).to eq(nil)
 end
 end

 context "when there's a current user" do
 # override `context`
 let(:context) {
 { current_user: User.new(name: "ABC") }
 }
 it "shows the user's name" do
 user_name = result["data"]["viewer"]["name"]
 expect(user_name).to eq("ABC")
 end
 end
 end
end

layout: guide
doc_stub: false
search: true
section: Subscriptions
title: Action Cable Implementation
desc: GraphQL subscriptions over ActionCable
index: 4

ActionCable [http://guides.rubyonrails.org/action_cable_overview.html] is a great platform for delivering GraphQL subscriptions on Rails 5+. It handles message passing (via broadcast) and transport (via transmit over a websocket).

To get started, see examples in the API docs: {{ “GraphQL::Subscriptions::ActionCableSubscriptions” | api_doc }}.

See client usage for {% internal_link “Apollo Client”, “/javascript_client/apollo_subscriptions” %} or {% internal_link “Relay Modern”, “/javascript_client/relay_subscriptions” %}.

layout: guide
doc_stub: false
search: true
section: Subscriptions
title: Implementation
desc: Subscription execution and delivery
index: 3

The {{ “GraphQL::Subscriptions” | api_doc }} plugin is a base class for implementing subscriptions.

Each method corresponds to a step in the subscription lifecycle. See the API docs for method-by-method documentation: {{ “GraphQL::Subscriptions” | api_doc }}.

Also, see the {% internal_link “Pusher implementation guide”, “subscriptions/pusher_implementation” %}, the {% internal_link “ActionCable implementation guide”, “subscriptions/action_cable_implementation” %} or {{ “GraphQL::Subscriptions::ActionCableSubscriptions” | api_doc }} docs for an example implementation.

Considerations

Every Ruby application is different, so consider these points when implementing subscriptions:

	Is your application single-process or multiprocess? Single-process applications can store state in memory while multiprocess applications need a message broker to keep all processes up-to-date.

	What components of your application can be used for persistence and message passing?

	How will you deliver push updates to subscribed clients? (For example, websockets, ActionCable, Pusher, webhooks, or something else?)

	How will you handle thundering herd [https://en.wikipedia.org/wiki/Thundering_herd_problem]s? When an event is triggered, how will you manage database access to update clients without swamping your system?

layout: guide
doc_stub: false
search: true
section: Subscriptions
title: Overview
desc: Introduction to Subscriptions in GraphQL-Ruby
index: 0

Subscriptions allow GraphQL clients to observe specific events and receive updates from the server when those events occur. This supports live updates, such as websocket pushes. Subscriptions introduce several new concepts:

	The Subscription type is the entry point for subscription queries

	Triggers begin the update process

	The Implementation provides application-specific methods for executing & delivering updates.

Subscription Type

subscription is an entry point to your GraphQL schema, like query or mutation. It is defined by your SubscriptionType, a root-level GraphQL::Schema::Object.

Read more in the {% internal_link “Subscription Type guide”, “subscriptions/subscription_type” %}.

Triggers

After an event occurs in our application, triggers begin the update process by sending a name and payload to GraphQL.

Read more in the {% internal_link “Triggers guide”,”subscriptions/triggers” %}.

Implementation

Besides the GraphQL component, your application must provide some subscription-related plumbing, for example:

	state management: How does your application keep track of who is subscribed to what?

	transport: How does your application deliver payloads to clients?

	queueing: How does your application distribute the work of re-running subscription queries?

Read more in the {% internal_link “Implementation guide”, “subscriptions/implementation” %} or check out the {% internal_link “ActionCable implementation”, “subscriptions/action_cable_implementation” %} or {% internal_link “Pusher implementation”, “subscriptions/pusher_implementation” %}.

layout: guide
doc_stub: false
search: true
section: Subscriptions
title: Pusher Implementation
desc: GraphQL subscriptions over Pusher
index: 6
pro: true

GraphQL Pro [http://graphql.pro] includes a subscription system based on Redis [http://redis.io] and Pusher [http://pusher.com] which works with any Ruby web framework.

After creating an app on Pusher and configuring the Ruby gem [https://github.com/pusher/pusher-http-ruby#global], you can hook it up to your GraphQL schema.

	How it Works

	Database setup

	Schema configuration

	Execution configuration

	Webhook configuration

	Authorization

	Serializing context

	Dashboard

	Development tips

	Client configuration

How it Works

This subscription implementation uses a hybrid approach:

	Your app takes GraphQL queries an runs them

	Redis stores subscription data for later updates

	Pusher sends updates to subscribed clients

So, the lifecycle goes like this:

	A subscription query is sent by HTTP Post to your server (just like a query or mutation)

	The response contains a Pusher channel ID (as an HTTP header) which the client may subscribe to

	The client opens that Pusher channel

	When the server triggers updates, they’re delivered over the Pusher channel

	When the client unsubscribes, the server receives a webhook and responds by removing its subscription data

Here’s another look:

1. Subscription is created in your app

 HTTP POST
 .----------> write to Redis
 📱 ⚙️ -----> 💾
 <---------'
 X-Subscription-ID: 1234

2. Client opens a connection to Pusher

 websocket
 📱 <---------> ☁️

3. The app sends updates via Pusher

 ⚙️ ---------> ☁️ ------> 📱
 POST update
 (via gem) (via websocket)

4. When the client unsubscribes, Pusher notifies the app

 webhook
 ⚙️ <-------- ☁️ (disconnect) 📱

By using this configuration, you can use GraphQL subscriptions without hosting a push server yourself!

Database setup

Subscriptions require a persistent Redis database, configured with:

maxmemory-policy noeviction
optional, more durable persistence:
appendonly yes

Otherwise, Redis will drop data that doesn’t fit in memory (read more in “Redis persistence” [https://redis.io/topics/persistence]).

If you’re already using Redis in your application, see “Storing Data in Redis” [http://www.mikeperham.com/2015/09/24/storing-data-with-redis/] for options to isolate data and tune your configuration.

Schema configuration

Add redis to your Gemfile:

gem 'redis'

and bundle install. Then create a Redis instance:

for example, in an initializer:
$graphql_subscriptions_redis = Redis.new # default connection

Then, that Redis client is passed to the Subscription configuration:

class MySchema < GraphQL::Schema
 use GraphQL::Pro::Subscriptions, redis: $graphql_subscriptions_redis
end

That connection will be used for managing subscription state. All writes to Redis are prefixed with graphql:sub:.

Execution configuration

During execution, GraphQL will assign a subscription_id to the context hash. The client will use that ID to listen for updates, so you must return the subscription_id in the response headers.

Return result.context[:subscription_id] as the X-Subscription-ID header. For example:

result = MySchema.execute(...)
For subscriptions, return the subscription_id as a header
if result.subscription?
 response.headers["X-Subscription-ID"] = result.context[:subscription_id]
end
render json: result

This way, the client can use that ID as a Pusher channel.

For CORS requests, you need a special header so that clients can read the custom header:

if result.subscription?
 response.headers["X-Subscription-ID"] = result.context[:subscription_id]
 # Required for CORS requests:
 response.headers["Access-Control-Expose-Headers"] = "X-Subscription-ID"
end

Read more here: “Using CORS” [https://www.html5rocks.com/en/tutorials/cors/].

Webhook configuration

Your server needs to receive webhooks from Pusher when clients disconnect. This keeps your local subscription database in sync with Pusher.

In the Pusher web UI, Add a webhook for “Channel existence”

{{ “/subscriptions/pusher_webhook_configuration.png” | link_to_img:”Pusher Webhook Configuration” }}

Then, mount the Rack app for handling webhooks from Pusher. For example, on Rails:

config/routes.rb

Include GraphQL::Pro's routing extensions:
using GraphQL::Pro::Routes

Rails.application.routes.draw do
 # ...
 # Handle Pusher webhooks for subscriptions:
 mount MySchema.pusher_webhooks_client, at: "/pusher_webhooks"
end

This way, we’ll be kept up-to-date with Pusher’s unsubscribe events.

Authorization

To ensure the privacy of subscription updates, you should use a private channel [https://pusher.com/docs/client_api_guide/client_private_channels] for transport.

To use a private channel, add a channel_prefix: key to your query context:

MySchema.execute(
 query_string,
 context: {
 # If this query is a subscription, use this prefix for the Pusher channel:
 channel_prefix: "private-user-#{current_user.id}-",
 # ...
 },
 # ...
)

That prefix will be applied to GraphQL-related Pusher channel names. (The prefix should begin with private-, as required by Pusher.)

Then, in your auth endpoint [https://pusher.com/docs/authenticating_users#implementing_private_endpoints], you can assert that the logged-in user matches the channel name:

if params[:channel_name].start_with?("private-user-#{current_user.id}-")
 # success, render the auth token
else
 # failure, render unauthorized
end

Serializing Context

Since subscription state is stored in the database, then reloaded for pushing updates, you have to serialize and reload your query context.

By default, this is done with {{ “GraphQL::Subscriptions::Serialize” | api_doc }}’s dump and load methods, but you can provide custom implementations as well. To customize the serialization logic, create a subclass of GraphQL::Pro::Subscriptions and override #dump_context(ctx) and #load_context(ctx_string):

class CustomSubscriptions < GraphQL::Pro::Subscriptions
 def dump_context(ctx)
 context_hash = ctx.to_h
 # somehow convert this hash to a string, return the string
 end

 def load_context(ctx_string)
 # Given the string from the DB, create a new hash
 # to use as `context:`
 end
end

Then, use your custom subscriptions class instead of the built-in one for your schema:

class MySchema < GraphQL::Schema
 # Use custom subscriptions instead of GraphQL::Pro::Subscriptions
 # to get custom serialization logic
 use CustomSubscriptions, redis: $redis
end

That gives you fine-grained control of context reloading.

Dashboard

You can monitor subscription state in the {% internal_link “GraphQL-Pro Dashboard”, “/pro/dashboard” %}:

{{ “/subscriptions/redis_dashboard_1.png” | link_to_img:”Redis Subscription Dashboard” }}

{{ “/subscriptions/redis_dashboard_2.png” | link_to_img:”Redis Subscription Detail” }}

Development Tips

Clear subscription data

At any time, you can reset your subscription database with the “Reset” button in the {% internal_link “GraphQL-Pro Dashboard”, “/pro/dashboard” %}, or in Ruby:

Wipe all subscription data from the DB:
MySchema.subscriptions.clear

Developing with Pusher webhooks

To receive Pusher’s webhooks in development, Pusher suggests using ngrok [https://support.pusher.com/hc/en-us/articles/203112227-Developing-against-and-testing-WebHooks]. It gives you a public URL which you can setup with Pusher, then any hooks delivered to that URL will be forwarded to your development environment.

Client configuration

Install the Pusher JS client [https://github.com/pusher/pusher-js] then see docs for {% internal_link “Apollo Client”, “/javascript_client/apollo_subscriptions” %} or {% internal_link “Relay Modern”, “/javascript_client/relay_subscriptions” %}.

layout: guide
doc_stub: false
search: true
section: Subscriptions
title: Subscription Type
desc: The root type for subscriptions
index: 1

Subscription is the entry point for all subscriptions in a GraphQL system. Each field corresponds to an event which may be subscribed to:

type Subscription {
 # Triggered whenever a post is added
 postWasPublished: Post
 # Triggered whenever a comment is added;
 # to watch a certain post, provide a `postId`
 commentWasPublished(postId: ID): Comment
}

This type is the root for subscription operations, for example:

subscription {
 postWasPublished {
 # This data will be delivered whenever `postWasPublished`
 # is triggered by the server:
 title
 author {
 name
 }
 }
}

To add subscriptions to your system, define an ObjectType named Subscription:

app/graphql/types/subscription_type.rb
class Types::SubscriptionType < GraphQL::Schema::Object
 field :post_was_published, Types::PostType, null: false,
 description: "A post was published to the blog"
 # ...
end

Then, add it as the subscription root with subscription(...):

app/graphql/my_schema.rb
class MySchema < GraphQL::Schema
 query(Types::QueryType)
 # ...
 # Add Subscription to
 subscription(Types::SubscriptionType)
end

See {% internal_link “Implementing Subscriptions”,”subscriptions/implementation” %} for more about actually delivering updates.

Authorizing Subscriptions

When a client first sends a subscription operation, the root fields are resolved, so their corresponding methods are called, for example:

class Types::SubscriptionType < GraphQL::Schema::Object
 field :post_was_published, Types::PostType, null: false,
 description: "A post was published to the blog" do
 argument :topic, Types::PostTopic, required: true
 end

 def post_was_published(topic:)
 # This will be called on the initial request
 end
end

During that method, you can raise an error to prevent establishing the subscription. For example:

def post_was_published(topic:)
 if context[:viewer].can_subscribe_to?(topic)
 # Allow the request
 else
 raise GraphQL::ExecutionError.new("Can't subscribe to this topic: #{topic}")
 end
end

If the error is raised, it will be added to the response’s "errors" key and the subscription won’t be created.

The return value of the method is not used; only the raised error affects the behavior of the subscription.

layout: guide
doc_stub: false
search: true
section: Subscriptions
title: Triggers
desc: Sending updates from your application to GraphQL
index: 2

From your application, you can push updates to GraphQL clients with .trigger.

Events are triggered by name, and the name must match fields on your {% internal_link “Subscription Type”,”subscriptions/subscription_type” %}

Update the system with the new blog post:
MySchema.subscriptions.trigger("postAdded", {}, new_post)

The arguments are:

	name, which corresponds to the field on subscription type

	arguments, which corresponds to the arguments on subscription type (for example, if you subscribe to comments on a certain post, the arguments would be {postId: comment.post_id}.)

	object, which will be the root object of the subscription update

	scope: (shown below) for implicitly scoping the clients who will receive updates.

Scope

To send updates to certain clients only, you can use scope: to narrow the trigger’s reach.

Scopes are based on query context: a value in context: is used as the scope; an equivalent value must be passed with .trigger(... scope:) to update that client. (The value is serialized with {{ “GraphQL::Subscriptions::Serialize” | api_doc }})

To specify that a topic is scoped, edit the field definition on your root Subscription type. Use the subscription_scope: option to name a context: key, for example:

For a given viewer, this will be triggered
whenever one of their posts gets a new comment
field :comment_added, CommentType,
 null: false,
 description: "A comment was added to one of the viewer's posts"
 subscription_scope: :current_user_id

Then, subscription operations should have a context: { current_user_id: ... } value, for example:

current_user_id will be the scope for some subscriptions:
MySchema.execute(query_string, context: { current_user_id: current_user.id })

Finally, when events happen in your app, you should provide the scoping value as scope:, for example:

A new comment is added
comment = post.comments.create!(attrs)
notify the author
author_id = post.author.id
MySchema.subscriptions.trigger("commentAdded", {}, comment, scope: author_id)

Since this trigger has a scope:, only subscribers with a matching scope value will be updated.

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Enums
desc: Enums are sets of discrete values
index: 2
class_based_api: true

Enum types are sets of discrete values. An enum field must return one of the possible values of the enum. In the GraphQL Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL), enums are described like this:

enum MediaCategory {
 AUDIO
 IMAGE
 TEXT
 VIDEO
}

So, a MediaCategory value is one of: AUDIO, IMAGE, TEXT, or VIDEO. This is similar to ActiveRecord enums [http://api.rubyonrails.org/classes/ActiveRecord/Enum.html].

In a GraphQL query, enums are written as identifiers (not strings), for example:

search(term: "puppies", mediaType: IMAGE) { ... }

(Notice that IMAGE doesn’t have quotes.)

But, when GraphQL responses or variables are transported using JSON, enum values are expressed as strings, for example:

in a graphql controller:
params["variables"]
{ "mediaType" => "IMAGE" }

Defining Enum Types

In your application, enums extend {{ “GraphQL::Schema::Enum” | api_doc }} and define values with the value(...) method:

First, a base class
app/graphql/types/base_enum
class Types::BaseEnum < GraphQL::Schema::Enum
end

app/graphql/types/media_category.rb
class Types::MediaCategory < Types::BaseEnum
 value "AUDIO", "An audio file, such as music or spoken word"
 value "IMAGE", "A still image, such as a photo or graphic"
 value "TEXT", "Written words"
 value "VIDEO", "Motion picture, may have audio"
end

Each value may have:

	A description (as the second argument or description: keyword)

	A deprecation reason (as deprecation_reason:), marking this value as deprecated

	A corresponding Ruby value (as value:), see below

By default, Ruby strings correspond to GraphQL enum values. But, you can provide value: options to specify a different mapping. For example, if you use symbols instead of strings, you can say:

value "AUDIO", value: :audio

Then, GraphQL inputs of AUDIO will be converted to :audio and Ruby values of :audio will be converted to "AUDIO" in GraphQL responses.

Enum classes are never instantiated and their methods are never called.

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Extending the GraphQL-Ruby Type Definition System
desc: Adding metadata and custom helpers to the DSL
index: 8
class_based_api: true
redirect_from:

	/schema/extending_the_dsl/

While integrating GraphQL into your app, you can customize the definition DSL. For example, you might:

	Assign “area of responsibility” to different types and fields

	DRY up shared logic between types and fields

	Attach metadata for use during authorization

This guide describes various options for extending the class-based definition API. Keep in mind that these approaches may change as the API matures. If you’re having trouble, consider opening an issue on GitHub to get help.

Customization Overview

In general, the schema definition process goes like this:

	The application defines lots of classes for the GraphQL types

	The first time the schema is used, it “boots”…

	Which involves calling .to_graphql on all the application-defined classes

	.to_graphql returns a “legacy” GraphQL object (eg, GraphQL::ObjectType, GraphQL::ScalarType)

	Non-type objects (fields, arguments, enum values) have a slightly different process:

	During a type’s .to_graphql method, definition objects are initialized (eg GraphQL::Schema::Field.new(...))

	Then, the initialized object receives .to_graphql (eg {{ “GraphQL::Schema::Field#to_graphql” | api_doc }})

	.to_graphql a “legacy” GraphQL object (eg GraphQL::Field)

This process will certainly change over time. The goal to entirely remove “legacy” GraphQL objects from the system. So, at that time, .to_graphql will no longer be used.

Another important note: after GraphQL-Ruby converts a class to a “legacy” object, the “legacy” object may be accessed using .graphql_definition. This cached instance is the “one true instance” used by GraphQL-Ruby.

Customizing type definitions

In your custom classes, you can override .to_graphql to customize the type that will be used at runtime. For example, to assign metadata values to an ObjectType:

class BaseObject < GraphQL::Schema::Object
 # Call this method in an Object class to set the permission level:
 def self.required_permission(permission_level)
 @required_permission = permission_level
 end

 # This method is overridden to customize object types:
 def self.to_graphql
 type_defn = super # returns a GraphQL::ObjectType
 # Get a configured value and assign it to metadata
 type_defn.metadata[:required_permission] = @required_permission
 type_defn
 end
end

Then, in concrete classes
class Dossier < BaseObject
 # The Dossier object type will have `.metadata[:required_permission] # => :admin`
 required_permission :admin
end

Now, any runtime code which uses .metadata[:required_permission] will get the right value.

Customizing fields

Fields are generated in a different way. Instead of using classes, they are generated with instances of GraphQL::Schema::Field (or a subclass). In short, the definition process works like this:

This is what happens under the hood, roughly:
In an object class:
field :name, String, null: false
...
Leads to:
field_config = GraphQL::Schema::Field.new(:name, String, null: false)
Then, later:
field_config.to_graphql # => returns a GraphQL::Field instance

So, you can customize this process by:

	creating a custom class which extends GraphQL::Schema::Field

	overriding #initialize and #to_graphql on that class (instance methods)

	registering that class as the field_class on Objects and Interfaces which should use the customized field.

For example, you can create a custom class which accepts a new parameter to initialize:

class AuthorizedField < GraphQL::Schema::Field
 # Override #initialize to take a new argument:
 def initialize(*args, required_permission:, **kwargs, &block)
 @required_permission = required_permission
 # Pass on the default args:
 super(*args, **kwargs, &block)
 end

 def to_graphql
 field_defn = super # Returns a GraphQL::Field
 field_defn.metadata[:required_permission] = @required_permission
 field_defn
 end
end

Then, pass the field class as field_class(...) wherever it should be used:

class BaseObject < GraphQL::Schema::Object
 # Use this class for defining fields
 field_class AuthorizedField
end

And/Or
class BaseInterface < GraphQL::Schema::Interface
 field_class AuthorizedField
end

Now, AuthorizedField.new(*args, &block).to_graphql will be used to create GraphQL::Fields.

Customizing Arguments

Arguments may be customized in a similar way to Fields.

	Create a new class extending GraphQL::Schema::Argument

	Assign it to your field class with argument_class(MyArgClass)

Then, in your custom argument class, you can use:

	#initialize(name, type, desc = nil, **kwargs) to take input from the DSL

	#to_graphql to modify the conversion to a {{ “GraphQL::Argument” | api_doc }}

Customizing Enum Values

Enum values may be customized in a similar way to Fields.

	Create a new class extending GraphQL::Schema::EnumValue

	Assign it to your base Enum class with enum_value_class(MyEnumValueClass)

Then, in your custom argument class, you can use:

	#initialize(name, desc = nil, **kwargs) to take input from the DSL

	#to_graphql to modify the conversion to a {{ “GraphQL::EnumType::EnumValue” | api_doc }}

Customization compatibility

Inevitably, this will result in some duplication while you migrate from one definition API to the other. Here are a couple of ways to re-use old customizations with the new framework:

Pass-through with accepts_definition. New schema classes have an accepts_definition method. They set up a configuration method which will pass the provided value to the existing (legacy-style) configuration function, for example:

Given a legacy-style configuration function:
GraphQL::ObjectType.accepts_definitions({ permission_level: ->(...) { ... } })

Prepare the config method in the base class:
class BaseObject < GraphQL::Schema::Object
 accepts_definition :permission_level
end

Call the config method in the object class:
class Account < BaseObject
 permission_level 1
end

Then, the runtime object will have the configured value, for example:
MySchema.find("Account").metadata[:permission_level]
=> 1

See {{ “GraphQL::Schema::Member::AcceptsDefinition” | api_doc }} for the implementation.

Invoke .call directly. If you defined a module with a .call method, you can invoke that method during .to_graphql. For example:

class BaseObject < GraphQL::Schema::Object
 def self.to_graphql
 type_defn = super
 # Re-use the accepts_definition callback manually:
 DefinePermission.call(type_defn, required_permission: @required_permission)
 type_defn
 end
end

Use .redefine. You can re-open a .define block at any time with .redefine. It returns a new, updated instance based on the old one. For example:

class BaseObject < GraphQL::Schema::Object
 def self.to_graphql
 type_defn = super
 # Read the value from the instance variable, since ivars don't work in `.define {...}` blocks
 configured_permission = @required_permission

 updated_type_defn = type_defn.redefine do
 # Use the accepts_definition method:
 required_permission(configured_permission)
 end

 # return the updated definition
 updated_type_defn
 end
end

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Input Objects
desc: Input objects are sets of key-value pairs which can be used as field arguments.
index: 3
class_based_api: true

Input object types are complex inputs for GraphQL operations. They’re great for fields that need a lot of structured input, like mutations or search fields. In a GraphQL request, it might look like this:

mutation {
 createPost(attributes: { title: "Hello World", fullText: "This is my first post", categories: [GENERAL] }) {
 # ^ Here is the input object ... ^
 }
}

Like a Ruby Hash, an input object consists of keys and values. Unlike a Hash, its keys and value types must be defined statically, as part of the GraphQL system. For example, here’s an input object, expressed in the GraphQL Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL):

input PostAttributes {
 title: String!
 fullText: String!
 categories: [PostCategory!]
}

This input object has three possible keys:

	title is required (denoted by !), and must be a String

	fullText is also a required String

	categories is optional (it doesn’t have !), and if present, it must be a list of PostCategory values.

Defining Input Object Types

Input object types extend {{ “GraphQL::Schema::InputObject” | api_doc }} and define key-value pairs with the argument(...) method. For example:

app/graphql/types/base_input_object.rb
Add a base class
class Types::BaseInputObject < GraphQL::Schema::InputObject
end

class Types::PostAttributes < Types::BaseInputObject
 description "Attributes for creating or updating a blog post"
 argument :title, String, "Header for the post", required: true
 argument :full_text, String, "Full body of the post", required: true
 argument :categories, [Types::PostCategory], required: false
end

For a full description of the argument(...) method, see the {% internal_link “argument section of the Objects guide”,”/type_definitions/objects#field-arguments” %}.

Using Input Objects

Input objects are passed to field methods as an instance of their definition class. So, inside the field method, you can access any key of the object by:

	calling its method, corresponding to the name (underscore-cased)

	calling #[] with the camel-cased name of the argument (this is for compatibility with previous GraphQL-Ruby versions)

This field takes an argument called `attributes`
which will be an instance of `PostAttributes`
field :create_post, Types::Post, null: false do
 argument :attributes, Types::PostAttributes, required: true
end

def create_post(attributes:)
 puts attributes.class.name
 # => "Types::PostAttributes"
 # Access a value by method (underscore-cased):
 puts attributes.full_text
 # => "This is my first post"
 # Or by hash-style lookup (camel-cased, for compatibility):
 puts attributes[:fullText]
 # => "This is my first post"
end

Customizing Input Objects

You can add or override methods on input object classes to customize them. They have two instance variables by default:

	@arguments: A {{ “GraphQL::Query::Arguments” | api_doc }} instance

	@context: The current {{ “GraphQL::Query::Context” | api_doc }}

Any extra methods you define on the class can be used for field resolution, as demonstrated above.

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Interfaces
desc: Interfaces are lists of fields which objects may implement
index: 4
class_based_api: true
redirect_from:

	/types/abstract_types/

Interfaces are lists of fields which may be implemented by object types.

An interface has fields, but it’s never actually instantiated. Instead, objects may implement interfaces, which makes them a member of that interface. Also, fields may return interface types. When this happens, the returned object may be any member of that interface.

For example, let’s say a Customer (interface) may be either an Individual (object) or a Company (object). Here’s the structure in the GraphQL Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL):

interface Customer {
 name: String!
 outstandingBalance: Int!
}

type Company implements Customer {
 employees: [Individual!]!
 name: String!
 outstandingBalance: Int!
}

type Individual implements Customer {
 company: Company
 name: String!
 outstandingBalance: Int!
}

Notice that the Customer interface requires two fields, name: String! and outstandingBalance: Int!. Both Company and Individual implement those fields, so they can implement Customer. Their implementation of Customer is made explicit by implements Customer in their definition.

When querying, you can get the fields on an interface:

{
 customers(first: 5) {
 name
 outstandingBalance
 }
}

Whether the objects are Company or Individual, it doesn’t matter – you still get their name and outstandingBalance. If you want some object-specific fields, you can query them with an inline fragment, for example:

{
 customers(first: 5) {
 name
 ... on Individual {
 company { name }
 }
 }
}

This means, “if the customer is an Individual, also get the customer’s company name”.

Interfaces are a good choice whenever a set of objects are used interchangeably, and they have several significant fields in common. When they don’t have fields in common, use a {% internal_link “Union”, “/type_definitions/unions” %} instead.

Defining Interface Types

Interfaces are Ruby modules which include {{ “GraphQL::Schema::Interface” | api_doc }}. First, make a base module:

module Types::BaseInterface
 include GraphQL::Schema::Interface
end

Then, include that into each interface:

module Types::RetailItem
 include Types::BaseInterface
 description "Something that can be bought"
 field :price, Types::Price, "How much this item costs", null: false

 def price
 # Optional: provide a special implementation of `price` here
 end

 # Optional, see below
 definition_methods do
 # Optional: if this method is defined, it overrides `Schema.resolve_type`
 def resolve_type(object, context)
 # ...
 end
 end
end

Interface classes are never instantiated. At runtime, only their .resolve_type methods are called (if they’re defined).

Implementing Fields

Interfaces may provide field implementations along with the signatures. For example:

field :price, Types::Price, "How much this item costs", null: false

Implement this field to return a `::Price` object
def price
 ::Price.from_cents(@object.price_in_cents)
end

This method will be called by objects who implement the interface. To override this implementation,
object classes can override the #price method.

Definition Methods

You can use definition_methods do ... end to add helper methods to interface modules. By adding methods to definition_methods:

	Those methods will be available as class methods in the interface itself

	These class methods will also be added to interfaces that include this interface.

This way, class methods are inherited when interfaces include other interfaces. (definition_methods is like ActiveSupport::Concern’s class_methods in this regard, but it has a different name to avoid naming conflicts).

For example, you can add definition helpers to your base interface, then use them in concrete interfaces later:

First, add a helper method to `BaseInterface`'s definition methods
module Types::BaseInterface
 include GraphQL::Schema::Interface

 definition_methods do
 # Use this to add a price field + default implementation
 def price_field
 field(:price, ::Types::Price, null: false)
 define_method(:price) do
 ::Price.from_cents(@object.price_in_cents)
 end
 end
 end
end

Then call it later
module Types::ForSale
 include Types::BaseInterface
 # This calls `price_field` from definition methods
 price_field
end

The type definition DSL uses this mechanism, too, so you can override those methods here also.

Resolve Type

When a field’s return type is an interface, GraphQL has to figure out what specific object type to use for the return value. In the example above, each customer must be categorized as an Individual or Company. You can do this by:

	Providing a top-level Schema.resolve_type method; OR

	Providing an interface-level .resolve_type method in definition_methods.

This method will be called whenever an object must be disambiguated. For example:

module Types::RetailItem
 include Types::BaseInterface
 definition_methods do
 # Determine what object type to use for `object`
 def resolve_type(object, context)
 if object.is_a?(::Car) || object.is_a?(::Truck)
 Types::Car
 elsif object.is_a?(::Purse)
 Types::Purse
 else
 raise "Unexpected RetailItem: #{object.inspect}"
 end
 end
 end
end

Orphan Types

If you add an object type which implements an interface, but that object type doesn’t properly appear in your schema, then you need to add that object to the interfaces’s orphan_types, for example:

module Types::RetailItem
 include Types::BaseInterface
 # ...
 orphan_types Types::Comment
end

Alternatively you can add the object types to the schema’s orphan_types:

class MySchema < GraphQL::Schema
 orphan_types Types::Comment
end

This is required because a schema finds it types by traversing its fields, starting with query, mutation and subscription. If an object is never the return type of a field, but only connected via an interface, then it must be explicitly connected to the schema via orphan_types. For example, given this schema:

type Query {
 node(id: ID!): Node
}

interface Node {
 id: ID!
}

type Comment implements Node {
 id: ID!
}

Comment must be added via orphan_types since it’s never used as the return type of a field. (Only Node and ID are used as return types.)

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Lists
desc: Ordered lists containing other types
index: 6
class_based_api: true

GraphQL has list types which are ordered lists containing items of other types. The following examples use the GraphQL Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL).

Fields may return a single scalar value (eg String), or a list of scalar values (eg, [String], a list of strings):

type Spy {
 # This spy's real name
 realName: String!
 # Any other names that this spy goes by
 aliases: [String!]
}

Fields may also return lists of other types as well:

enum PostCategory {
 SOFTWARE
 UPHOLSTERY
 MAGIC_THE_GATHERING
}

type BlogPost {
 # Zero or more categories this post belongs to
 categories: [PostCategory!]
 # Other posts related to this one
 relatedPosts: [BlogPost!]
}

Inputs may also be lists. Arguments can accept list types, for example:

type Query {
 # Return the latest posts, filtered by `categories`
 posts(categories: [PostCategory!]): [BlogPost!]
}

When GraphQL is sent and received with JSON, GraphQL lists are expressed in JSON arrays.

List Types in Ruby

To define a list type in Ruby use [...] (a Ruby array with one member, the inner type). For example:

A field returning a list type:
Equivalent to `aliases: [String!]` above
field :aliases, [String], null: true

An argument which accepts a list type:
argument :categories, [Types::PostCategory], required: false

For input, GraphQL lists are converted to Ruby arrays.

For fields that return list types, any object responding to #each may be returned. It will be enumerated as a GraphQL list.

To define lists where nil may be a member of the list, use null: true in the definition array, for example:

Equivalent to `previousEmployers: [Employer]!`
field :previous_employers, [Types::Employer, null: true], "Previous employers; `null` represents a period of self-employment or unemployment" null: false

Lists, Nullable Lists, and Lists of Nulls

Combining list types and non-null types can be a bit tricky. There are four possible combinations, based on two parameters:

	Nullability of the field: can this field return null, or does it always return a list?

	Nullability of the list items: when a list is present, may it include null?

Here’s how those combinations play out:

 | nullable field | non-null field
nullable items | [Integer, null: true], null: true# => [Int] | [Integer, null: true], null: false# => [Int]!
non-null items | [Integer], null: true# => [Int!] | [Integer], null: false# => [Int!]!

 Non-null return types

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Non-Null Types
desc: Values which must be present
index: 7
class_based_api: true

GraphQL’s concept of non-null is expressed in the Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL) with !, for example:

type User {
 # This field _always_ returns a String, never returns `null`
 handle: String!
 # `since:` _must_ be passed a `DateTime` value, it can never be omitted or passed `null`
 followers(since: DateTime!): [User!]!
}

In Ruby, this concept is expressed with null: for fields and required: for arguments.

Non-null return types

When ! is used for field return types (like handle: String! above), it means that the field will never (and may never) return nil.

To make a field non-null in Ruby, use null: false in the field definition:

equivalent to `handle: String!` above
field :handle, String, null: false

This means that the field will never be nil (and if it is, it will be removed from the response, as described below).

Non-null error propagation

If a non-null field ever returns nil, then the entire selection will be removed from the response and replaced with nil. If this removal would result in another invalid nil, then it cascades upward, until it reaches the root "data" key. This is to support clients in strongly-typed languages. Any non-null field will never return null, and client developers can depend on that.

Non-null argument types

When ! is used for arguments (like followers(since: DateTime!) above), it means that the argument is required for the query to execute. Any query which doesn’t have a value for that argument will be rejected immediately.

To make an argument non-null in Ruby, use required: true, for example:

equivalent to `since: DateTime!` above
argument :since, Types::DateTime, required: true

This means that any query without a value for since: will be rejected.

 Object classes

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Objects
desc: Objects expose data and link to other objects
index: 0
class_based_api: true

GraphQL object types are the bread and butter of GraphQL APIs. Each object has fields which expose data and may be queried by name. For example, we can query a User like this:

user {
 handle
 email
}

And get back values like this:

{
 "user" => {
 "handle" => "rmosolgo",
 "email" => nil,
 }
}

Generally speaking, GraphQL object types correspond to models in your application, like User, Product, or Comment. Sometimes, object types are described using the GraphQL Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL):

type User {
 email: String
 handle: String!
 friends: [User!]!
}

This means that User objects have three fields:

	email, which may return a String or nil.

	handle, which returns a String but never nil (! means the field never returns nil)

	friends, which returns a list of other Users ([...] means the field returns a list of values; User! means the list contains User objects, and never contains nil.)

The same object can be defined using Ruby:

class User < GraphQL::Schema::Object
 field :email, String, null: true
 field :handle, String, null: false
 field :friends, [User], null: false
end

The rest of this guide will describe how to define GraphQL object types in Ruby. To learn more about GraphQL object types in general, see the GraphQL docs [http://graphql.org/learn/schema/#object-types-and-fields].

Object classes

Classes extending {{ “GraphQL::Schema::Object” | api_doc }} describe Object types [http://graphql.org/learn/schema/#object-types-and-fields] and customize their behavior.

Object fields can be created with the field(...) class method, described in detail below

Field and argument names should be underscored as a convention. They will be converted to camelCase in the underlying GraphQL type and be camelCase in the schema itself.

first, somewhere, a base class:
class Types::BaseObject < GraphQL::Schema::Object
end

then...
class Types::TodoList < Types::BaseObject
 description "A list of items which may be completed"

 field :name, String, "The unique name of this list", null: false
 field :is_completed, String, "Completed status depending on all tasks being done.", null: false
 # Related Object:
 field :owner, Types::User, "The creator of this list", null: false
 # List field:
 field :viewers, [Types::User], "Users who can see this list", null: false
 # Connection:
 field :items, Types::TodoItem.connection_type, "Tasks on this list", null: false do
 argument :status, TodoStatus, "Restrict items to this status", required: false
 end
end

Fields

Object fields expose data about that object or connect the object to other objects. You can add fields to your object types with the field(...) class method, for example:

field :name, String, "The unique name of this list", null: false

The different elements of field definition are addressed below:

	Return types say what kind of data this field returns

	Documentation includes description and deprecation notes

	Resolution behavior hooks up Ruby code to the GraphQL field

	Arguments allow fields to take input when they’re queried

	Extra field metadata for low-level access to the GraphQL-Ruby runtime

	Add default values for field parameters

Field Return Type

The second argument to field(...) is the return type. This can be:

	A built-in GraphQL type (Integer, Float, String, ID, or Boolean)

	A GraphQL type from your application

	An array of any of the above, which denotes a {% internal_link “list type”, “/type_definitions/lists” %}.

{% internal_link “Nullability”, “/type_definitions/non_nulls” %} is expressed with the required null: keyword:

	null: true means that the field may return nil

	null: false means the field is non-nullable; it may not return nil. If the implementation returns nil, GraphQL-Ruby will return an error to the client.

Additionally, list types maybe nullable by adding [..., null: true] to the definition.

Here are some examples:

field :name, String, null: true # `String`, may return a `String` or `nil`
field :id, ID, null: false # `ID!`, always returns an `ID`, never `nil`
field :teammates, [Types::User], null: false # `[User!]!`, always returns a list containing `User`s
field :scores, [Integer, null: true], null: true # `[Int]`, may return a list or `nil`, the list may contain a mix of `Integer`s and `nil`s

Field Documentation

Fields maybe documented with a description and may be deprecated.

Descriptions can be added with the field(...) method as a positional argument, a keyword argument, or inside the block:

3rd positional argument
field :name, String, "The name of this thing", null: false
`description:` keyword
field :name, String, null: false, description: "The name of this thing"
inside the block
field :name, String, null: false do
 description "The name of this thing"
end

Deprecated fields can be marked by adding a deprecation_reason: keyword argument:

field :email, String, null: true, deprecation_reason: "Users may have multiple emails, use `User.emails` instead."

Fields with a deprecation_reason: will appear as “deprecated” in GraphiQL.

Field Resolution

In general, fields return Ruby values corresponding to their GraphQL return types. For example, a field with the return type String should return a Ruby string, and a field with the return type [User!]! should return a Ruby array with zero or more User objects in it.

By default, fields return values by:

	Trying to call a method on the underlying object; OR

	If the underlying object is a Hash, lookup a key in that hash.

The method name or hash key corresponds to the field name, so in this example:

field :top_score, Integer, null: false

The default behavior is to look for a #top_score method, or lookup a Hash key, :top_score (symbol) or "top_score" (string).

You can override the method name with the method: keyword, or override the hash key with the hash_key: keyword, for example:

Use the `#best_score` method to resolve this field
field :top_score, Integer, null: false, method: :best_score
Lookup `hash["allPlayers"]` to resolve this field
field :players, [User], null: false, hash_key: "allPlayers"

If you don’t want to delegate to the underlying object, you can define a method for each field:

Use the custom method below to resolve this field
field :total_games_played, Integer, null: false

def total_games_played
 object.games.count
end

Inside the method, you can access some helper methods:

	object is the underlying application object (formerly obj to resolve functions)

	context is the query context (passed as context: when executing queries, formerly ctx to resolve functions)

Additionally, when you define arguments (see below), they’re passed to the method definition, for example:

Call the custom method with incoming arguments
field :current_winning_streak, Integer, null: false do
 argument :include_ties, Boolean, required: false, default_value: false
end

def current_winning_streak(include_ties:)
 # Business logic goes here
end

Field Arguments

Arguments allow fields to take input to their resolution. For example:

	A search() field may take a term: argument, which is the query to use for searching, eg search(term: "GraphQL")

	A user() field may take an id: argument, which specifies which user to find, eg user(id: 1)

	An attachments() field may take a type: argument, which filters the result by file type, eg attachments(type: PHOTO)

Arguments can be expressed in the SDL:

type User {
 # This user's transaction history, after `since` if present.
 transactions(since: DateTime): [Transaction!]!
}

Arguments are typed, so each argument takes a certain kind of data. Only a few types are valid inputs:

	{% internal_link “Scalars”, “/type_definitions/scalars” %}, such as String, Integer, Float, Boolean, ID, or custom scalar types

	{% internal_link “Enums”, “/type_definitions/enums” %}, defined by your application

	{% internal_link “Input objects”, “/type_definitions/input_objects” %}, defined by your application

	{% internal_link “Lists”, “/type_definitions/lists” %} of any of the above type

(Objects, interfaces, and unions are not valid input types.)

To add arguments to fields, use the argument(...) method, inside a block:

field :transactions, [Types::Transaction], null: false do
 argument :since, Types::DateTime, required: false
end

If an argument has required: true, then all queries to the field must provide a value for that argument. required: false means that the argument is optional. (This is called {% internal_link “nullability”, “/type_definitions/non_nulls” %} in GraphQL.)

Arguments can also accept a description and a default_value:, for example:

field :transactions, [Types::Transaction], null: false do
 # Description is added after the type name or the `description:` keyword argument
 # By default, `isCompleted: true` will be used
 argument :is_completed, Boolean, "Filter by completed/incompleted status", required: false, default_value: true
end

During field resolution, arguments are passed to the object’s method. So, for transactions above:

In GraphQL, `transactions(isCompleted: true)` will become:
def transactions(is_completed:)
 p is_completed
 # => true
 # ...
end

So, each argument corresponds to a keyword in the method. Inside the method, you can use those values to search, filter and perform business logic for your field.

Extra Field Metadata

Inside a field method, you can access some low-level objects from the GraphQL-Ruby runtime. Be warned, these APIs are subject to change, so check the changelog when updating.

A few extras are available:

	irep_node

	ast_node

	parent, the parent field context

	execution_errors, whose #add(err_or_msg) method should be used for adding errors

To inject them into your field method, first, add the extras: option to the field definition:

field :my_field, String, null: false, extras: [:irep_node]

Then add irep_node: keyword to the method signature:

def my_field(irep_node:)
 # ...
end

At runtime, the requested runtime object will be passed to the field.

Custom extras are also possible. Any method on your field class can be passed to extras: [...], and the value will be injected into the method. For example, extras: [:owner] will inject the object type who owns the field. Any new methods on your custom field class may be used, too.

Field Parameter Default Values

The field method requires you to pass null: keyword argument to determine whether the field is nullable or not. Another field you may want to overrid is camelize, which is true by default. You can override this behavior by adding a custom field.

class CustomField < GraphQL::Schema::Field
 # Add `null: false` and `camelize: false` which provide default values
 # in case the caller doesn't pass anything for those arguments.
 # **kwargs is a catch-all that will get everything else
 def initialize(*args, null: false, camelize: false, **kwargs, &block)
 # Then, call super _without_ any args, where Ruby will take
 # _all_ the args originally passed to this method and pass it to the super method.
 super
 end
end

Implementing interfaces

If an object implements any interfaces, they can be added with implements, for example:

This object implements some interfaces:
implements GraphQL::Relay::Node.interface
implements Types::UserAssignableType

When an object implements interfaces, it:

	inherits the GraphQL field definitions from that object

	includes that module into the object definition

Read more about interfaces in the {% internal_link “Interfaces guide”, “/type_definitions/interfaces” %}

 First, ask yourself …

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Resolvers
desc: Reusable, extendable resolution logic for complex fields
index: 9
class_based_api: true
redirect_from:

	/fields/functions

A {{ “GraphQL::Schema::Resolver” | api_doc }} is a container for field signature and resolution logic. It can be attached to a field with the resolver: keyword:

Use the resolver class to execute this field
field :pending_orders, resolver: PendingOrders

Under the hood, {{ “GraphQL::Schema::Mutation” | api_doc }} is a specialized subclass of Resolver.

First, ask yourself …

Do you really need a Resolver? Putting logic in a Resolver has some downsides:

	Since it’s coupled to GraphQL, it’s harder to test than a plain ol’ Ruby object in your app

	Since the base class comes from GraphQL-Ruby, it’s subject to upstream changes which may require updates in your code

Here are a few alternatives to consider:

	Put display logic (sorting, filtering, etc.) into a plain ol’ Ruby class in your app, and test that class

	Hook up that object with a method, for example:

field :recommended_items, [Types::Item], null: false
def recommended_items
 ItemRecommendation.new(user: context[:viewer]).items
end

	If you have lots of arguments to share, use a class method to generate fields, for example:

Generate a field which returns a filtered, sorted list of items
def self.items_field(name, override_options)
 # Prepare options
 default_field_options = { type: [Types::Item], null: false }
 field_options = default_field_options.merge(override_options)
 # Create the field
 field(name, field_options) do
 argument :order_by, Types::ItemOrder, required: false
 argument :category, Types::ItemCategory, required: false
 # Allow an override block to add more arguments
 yield if block_given?
 end
end

Then use the generator to create a field:
items_field(:recommended_items) do
 argument :similar_to_product_id, ID, required: false
end
Implement the field
def recommended_items
 # ...
end

As a matter of code organization, that class method could be put in a module and shared between different classes that need it.

	If you need the same logic shared between several objects, consider using a Ruby module and its self.included hook, for example:

module HasRecommendedItems
 def self.included(child_class)
 # attach the field here
 child_class.field(:recommended_items, [Types::Item], null: false)
 end

 # then implement the field
 def recommended_items
 # ...
 end
end

Add the field to some objects:
class Types::User < BaseObject
 include HasRecommendedItems # adds the field
end

	If the module approach looks good to you, also consider {% internal_link “Interfaces”, “/type_definitions/interfaces” %}. They also share behavior between objects (since they’re just modules that get included, after all), and they expose that commonality to clients via introspection.

When do you really need a resolver?

So, if there are other, better options, why does Resolver exist? Here are a few specific advantages:

	Isolation. A Resolver is instantiated for each call to the field, so its instance variables are private to that object. If you need to use instance variables for some reason, this helps. You have a guarantee that those values won’t hang around when the work is done.

	Complex Schema Generation. RelayClassicMutation (which is a Resolver subclass) generates input types and return types for each mutation. Using a Resolver class makes it easier to implement, share and extend this code generation logic.

Using resolver

To add resolvers to your project, make a base class:

app/graphql/resolvers/base.rb
module Resolvers
 class Base < GraphQL::Schema::Resolver
 # if you have a custom argument class, you can attach it:
 argument_class Arguments::Base
 end
end

Then, extend it as needed:

module Resolvers
 class RecommendedItems < Resolvers::Base
 type [Types::Item], null: false

 argument :order_by, Types::ItemOrder, required: false
 argument :category, Types::ItemCategory, required: false

 def resolve(order_by: nil, category: nil)
 # call your application logic here:
 recommendations = ItemRecommendation.new(
 viewer: context[:viewer],
 recommended_for: object,
 order_by: order_by,
 category: category,
)
 # return the list of items
 recommendations.items
 end
 end
end

And attach it to your field:

class Types::User < Types::BaseObject
 field :recommended_items,
 resolver: Resolvers::RecommendedItems,
 description: "Items this user might like"
end

Since the Resolver lifecycle is managed by the GraphQL runtime, the best way to test it is to execute GraphQL queries and check the results.

 Custom Scalars

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Scalars
desc: Scalars are “simple” data types like integers and strings
index: 1
class_based_api: true

Scalars are “leaf” values in GraphQL. There are several built-in scalars, and you can define custom scalars, too. ({% internal_link “Enums”, “/type_definitions/enums” %} are also leaf values.) The built-in scalars are:

	String, like a JSON or Ruby string

	Int, like a JSON or Ruby integer

	Float, like a JSON or Ruby floating point decimal

	Boolean, like a JSON or Ruby boolean (true or false)

	ID, which a specialized String for representing unique object identifiers

	ISO8601DateTime, an ISO 8601-encoded datetime

Fields can return built-in scalars by referencing them by name:

String field:
field :name, String,
Integer field:
field :top_score, Int, null: false
or:
field :top_score, Integer, null: false
Float field
field :avg_points_per_game, Float, null: false
Boolean field
field :is_top_ranked, Boolean, null: false
ID field
field :id, ID, null: false
ISO8601DateTime field
field :created_at, GraphQL::Types::ISO8601DateTime, null: false

Custom scalars (see below) can also be used by name:

`homepage: Url`
field :homepage, Types::Url, null: true

In the Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL), scalars are simply named:

scalar DateTime

Custom Scalars

You can implement your own scalars by extending {{ “GraphQL::Schema::Scalar” | api_doc }}. For example:

app/graphql/types/base_scalar.rb
Make a base class:
class Types::BaseScalar < GraphQL::Schema::Scalar
end

app/graphql/types/url.rb
class Types::Url < Types::BaseScalar
 description "A valid URL, transported as a string"

 def self.coerce_input(input_value, context)
 # Parse the incoming object into a `URI`
 url = URI.parse(input_value)
 if url.is_a?(URI::HTTP) || url.is_a?(URI::HTTPS)
 # It's valid, return the URI object
 url
 else
 raise GraphQL::CoercionError, "#{input_value.inspect} is not a valid URL"
 end
 end

 def self.coerce_result(ruby_value, context)
 # It's transported as a string, so stringify it
 ruby_value.to_s
 end
end

Your class must define two class methods:

	self.coerce_input takes a GraphQL input and converts it into a Ruby value

	self.coerce_result takes the return value of a field and prepares it for the GraphQL response JSON

When incoming data is incorrect, the method may raise {{ “GraphQL::CoercionError” | api_doc }}, which will be returned to the client in the "errors" key.

Scalar classes are never initialized; only their .coerce_* methods are called at runtime.

 Defining Union Types

layout: guide
doc_stub: false
search: true
section: Type Definitions
title: Unions
desc: Unions are sets of types which may appear in the same place (but don’t share fields).
index: 5
class_based_api: true

A union type is a set of object types which may appear in the same spot. Here’s a union, expressed in GraphQL Schema Definition Language [http://graphql.org/learn/schema/#type-language] (SDL):

union MediaItem = AudioClip | VideoClip | Image | TextSnippet

This might be used on a search field, for example:

searchMedia(term: "puppies") {
 ... on AudioClip {
 duration
 }
 ... on VideoClip {
 previewURL
 resolution
 }
 ... on Image {
 thumbnailURL
 }
 ... on TextSnippet {
 teaserText
 }
}

Here, the searchMedia field returns [MediaItem!], a list where each member is part of the MediaItem union. So, for each member, we want to select different fields depending on which kind of object that member is.

{% internal_link “Interfaces”, “/type_definitions/interfaces” %} are a similar concept, but in an interface, all types must share some common fields. Unions are a good choice when the object types don’t have any significant fields in common.

Since union members share no fields, selections are always made with typed fragments (... on SomeType, as seen above).

Defining Union Types

Unions extend GraphQL::Schema::Union. First, make a base class:

class Types::BaseUnion < GraphQL::Schema::Union
end

Then, extend that one for each union in your schema:

class Types::CommentSubject < BaseUnion
 description "Objects which may be commented on"
 possible_types Types::Post, Types::Image

 # Optional: if this method is defined, it will override `Schema.resolve_type`
 def self.resolve_type(object, context)
 if object.is_a?(BlogPost)
 Types::Post
 else
 Types::Image
 end
 end
end

The possible_types(*types) method accepts one or more types which belong to this union.

Union classes are never instantiated; At runtime, only their .resolve_type methods may be called (if defined).

For information about .resolve_type, see the {% internal_link “Interfaces guide”, “/type_definitions/interfaces#resolve-type” %}.

 graphql-ruby-client

graphql-ruby-client

1.4.1 (19 Sept 2018)

	Add connectionOptions to ActionCableLink #1857

1.4.0 (12 Apr 2018)

	Add PusherLink for Apollo 2 Subscriptions on Pusher

	Add OperationStoreLink for Apollo 2 persisted queries

1.3.0 (30 Nov 2017)

	Support HTTPS, basic auth, query string and port in sync #1053

	Add Apollo 2 support for ActionCable subscriptions #1120

	Add --outfile-type=json for stored operation manifest #1142

1.2.0 (15 Nov 2017)

	Support Apollo batching middleware #1092

1.1.3 (11 Oct 2017)

	Fix Apollo + ActionCable unsubscribe function #1019

1.1.2 (9 Oct 2017)

	Add channel IDs to ActionCable subscriptions #1004

1.1.1 (21 Sept 2017)

	Add --add-typename option to sync #967

1.1.0 (18 Sept 2017)

	Add subscription clients for Apollo and Relay Modern

1.0.2 (22 Aug 2017)

	Remove debug output

1.0.1 (21 Aug 2017)

	Rename from graphql-pro-js to graphql-ruby-client

1.0.0 (31 Jul 2017)

	Add sync task

 <no title>

 Copyright (c) Minimum Viable Software

graphql-ruby-client is an Open Source project licensed under the terms of
the LGPLv3 license. Please see http://www.gnu.org/licenses/lgpl-3.0.html
for license text.

GraphQL::Pro customers are granted a commercial-friendly license
allowing private forks and modifications of graphql-ruby-client.
Please see http://graphql.pro/ for more detail. You can find the
commercial license terms at http://graphql.pro/COMM-LICENSE.html.

 License

 Find the graphql-ruby-client docs on the GraphQL-Ruby website [http://graphql-ruby.org/javascript_client/overview].

License

graphql-ruby-client is available under the LGPLv3 license;
graphql-pro [https://graphql.pro] customers are granted a special commercial license.

Development

	With GraphQL-Ruby:

	Install the dependencies with rake js:install

	Run the tests with rake js:test

	Stand-alone:

	Install dependencies yarn install

	Run the tests yarn run test

	Install for local development with npm link .

 README

README

This README would normally document whatever steps are necessary to get the
application up and running.

Things you may want to cover:

	Ruby version

	System dependencies

	Configuration

	Database creation

	Database initialization

	How